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Résumé de la thèse

Qu’est-ce que l’optimisation de forme et de topologie ?

Dans l’ingénierie moderne, la quête de conceptions optimales a conduit à des avancées significatives dans
le domaine de l’optimisation de forme et de topologie. Ces méthodologies sont essentielles pour créer des
conceptions qui répondent à des critères de performance spécifiques tout en minimisant l’utilisation de
matériaux. Alors que des industries telles que l’aérospatiale, l’architecture et l’ingénierie biomédicale
repoussent sans cesse les limites du possible, la demande pour des approches de conception innovantes
atteint des niveaux sans précédent.

L’optimisation de forme se concentre sur le ra�nement de la géométrie d’une structure, tandis que
l’optimisation de topologie permet une réimagination radicale de la répartition des matériaux dans un
espace de calcul fixe. Les deux approches ont une large applicabilité dans divers domaines, o�rant des
perspectives sur des phénomènes naturels et inspirant même la formulation de nouveaux problèmes
mathématiques. Au-delà de la recherche théorique [186, 320, 70], ces techniques trouvent des applications
pratiques dans des domaines aussi variés que l’architecture [327, 352, 48], la géologie [187], la science des
matériaux [181, 72, 73], la mécanique des fluides [241, 242, 107, 144], et la vision par ordinateur ainsi que
le traitement d’images [126, 125, 124].

Le processus d’optimisation d’une forme implique plusieurs étapes clés. Dans un premier temps, un
objectif spécifique doit être défini — qu’il s’agisse de minimiser l’utilisation des matériaux, de réduire
la trâınée, de maximiser la résistance ou d’améliorer le transfert de chaleur. Ensuite, les paramètres
physiques et les particularités influençant la forme, tels que les dimensions géométriques, les propriétés
des matériaux ou les conditions aux limites, doivent être identifiés. Il est également crucial d’imposer des
contraintes, qu’elles soient physiques, mécaniques ou géométriques, via des algorithmes d’optimisation
appropriés. Les techniques couramment utilisées incluent les méthodes basées sur le gradient et les
algorithmes évolutionnaires, chacun o�rant des avantages uniques en fonction des exigences spécifiques
du problème. Des exemples spécifiques obtenus grâce à ces techniques sont illustrés dans la Fig. 1.

Le développement continu et l’application de ces stratégies d’optimisation promettent d’améliorer
considérablement notre capacité à concevoir et à fabriquer des structures à la fois e�caces, durables, et
adaptées aux exigences évolutives du futur. Le besoin de répondre à ces défis constitue la principale
motivation qui sous-tend notre travail.

Pourquoi étendre ces techniques aux surfaces ?

Récemment, il y a eu un intérêt croissant pour l’extension des techniques d’optimisation, en se concentrant
spécifiquement sur les domaines au sein des surfaces. Ce changement met l’accent sur l’optimisation des
surfaces plutôt que sur l’ensemble du domaine, ce qui est particulièrement pertinent dans les applications
où les propriétés de surface sont plus critiques que les caractéristiques globales. La plupart des techniques
existantes d’optimisation de forme et de topologie pour les surfaces sont généralement appliquées aux
coques et membranes [91]. En bref, les coques sont des structures très fines, telles que la coque d’un
navire, les toits de bâtiments et les fuselages d’avions. Un travail fondamental a déjà été réalisé dans
[3, 148], qui utilise les déformations de maillages simpliciaux, tandis que certains travaux récents [318, 338]
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adoptent une approche basée sur une grille. Cependant, l’optimisation de surface ne doit pas se limiter
aux structures en coque, car ses applications potentielles sont vastes et diverses :

• Transfert de chaleur. Dans les systèmes de refroidissement, la conception des surfaces des
échangeurs de chaleur joue un rôle crucial dans l’e�cacité du transfert thermique. En optimisant la
forme et la topologie de ces surfaces, il est possible d’améliorer considérablement la performance
thermique, de réduire l’utilisation des matériaux et d’améliorer la gestion globale de la chaleur dans
les applications électroniques et industrielles. Ce sujet a suscité beaucoup d’intérêt dans des études
récentes [203, 33].

• Aérodynamique et hydrodynamique. Les flux d’air et de fluide autour des surfaces telles que les
ailes d’avion [232], les coques de bateaux [160], ou les pales d’éoliennes [334] peuvent être optimisés
pour réduire la trâınée et améliorer l’e�cacité de la propulsion ou de la portance. L’optimisation
topologique des surfaces permet de concevoir des structures plus légères et plus e�caces en prenant
en compte le comportement du flux sur la surface.

• Acoustique. La performance acoustique est souvent influencée par la forme et les propriétés
de la surface. L’optimisation des surfaces peut réduire les bruits indésirables ou améliorer les
caractéristiques sonores souhaitées dans des applications telles que la conception de véhicules
[224, 271], les salles de concert [272] et les structures anti-bruit [119, 129].

Malgré l’intérêt croissant pour ce domaine, il n’existe toujours pas de cadre complet pour aborder ce
type de problèmes. Il reste beaucoup de travail à accomplir, notamment pour identifier des représentations
de forme e�caces sur les surfaces et développer des techniques mathématiques robustes pour résoudre
ces défis. C’est dans cette optique que la principale motivation de cette thèse est d’o�rir des techniques
générales, numériques et théoriques, permettant de conduire l’optimisation de forme et de topologie des
domaines sur des surfaces plongées dans Rd.

Portée de la thèse

Cette thèse se concentre sur l’optimisation de régions plongées dans une hypersurface de Rd. Du point
de vue conceptuel, la recherche revisite des méthodes classiques de conception optimale, telles que la
technique de variation de frontière d’Hadamard et le concept de dérivée topologique, que nous adaptons
au contexte surfacique étudié. Parallèlement, nous proposons un cadre théorique plus général ancré dans
la géométrie riemannienne, pour l’optimisation générale d’une région au sein d’une variété riemannienne.
L’application numérique de ces bases théoriques nécessite une stratégie numérique conçue pour suivre les
mouvements à grande échelle de régions sur des surfaces tridimensionnelles sous des champs de vitesse
complexes. L’approche adoptée dans cette thèse intègre un maillage géométrique précis avec la méthode
des ensembles de niveaux, permettant des calculs précis et capturant des déformations significatives,
y compris des changements topologiques. La discussion se concentre sur l’optimisation de régions qui
supportent des conditions aux limites spécifiques dans la formulation d’un problème aux valeurs aux
limites physique. Cela implique l’analyse d’équations aux dérivées partielles avec des conditions aux limites
de Dirichlet, Neumann et Robin pour optimiser la forme et la topologie de ces régions. Les applications
pratiques de ces techniques sont démontrées dans des scénarios tels que les systèmes de refroidissement
de composants mécaniques, les systèmes de positionnement avec pinces, les supports structurels et les
dispositifs d’invisibilité acoustique. L’ossature de ces applications pratiques motive la mise en œuvre
d’une bibliothèque open-source en C++20 spécifiquement développée pour l’optimisation de forme. Les
paradigmes de conception de la bibliothèque sont discutés, avec des exemples d’implémentation axés sur
l’optimisation de surfaces, ainsi qu’un aperçu de sa syntaxe et des suggestions pour des améliorations
futures. En résumé, cette thèse étend le champ d’application des techniques d’optimisation de forme et de
topologie au domaine des régions sur des surfaces dans Rd, faisant progresser à la fois la compréhension
théorique et pratique de la manière dont ces optimisations peuvent être appliquées à des géométries
complexes dans divers contextes d’ingénierie et de conception.
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Résumé des chapitres

Chapitre 1 : Une revue de l’optimisation de forme et de topologie
Ce chapitre o�re une revue complète des méthodes classiques d’optimisation de forme et de topologie,
retraçant leur développement historique, leurs applications et les avancées théoriques qui ont façonné ce
domaine. Nous explorons l’évolution de ces techniques, devenues centrales dans les pratiques de conception
modernes, en mettant en lumière leurs fondements mathématiques, tels que l’analyse par éléments finis,
l’analyse de sensibilité et les algorithmes d’optimisation. Tout au long du chapitre, nous examinons les
distinctions et les synergies entre l’optimisation de forme et de topologie, en o�rant des perspectives sur
la manière dont leur utilisation combinée peut conduire à des solutions de conception plus optimales.

Nous commençons par un aperçu des techniques classiques d’optimisation de forme et de topologie.
Après une brève introduction historique dans la Section 1.1, nous présentons la célèbre méthode de
variation de frontière d’Hadamard dans la Section 1.2, en expliquant le calcul des dérivées de forme ainsi
que quelques résultats clés. Dans la Section 1.3, nous détaillons comment les directions de descente lisse
peuvent être déduites de ces données. Ensuite, nous introduisons le concept de dérivée topologique dans
la Section 1.4, suivi d’une discussion sur la méthode des ensembles de niveaux, largement utilisée, et son
application dans une approche π adaptée au corps ∫ dans la Section 1.5. Pour illustrer ces méthodes en
pratique, nous résolvons le problème classique du porte-à-faux dans la Section 1.6. Dans la Section 1.7,
nous abordons les limites et les variantes de ces techniques, comme le phénomène d’homogénéisation, et
enfin, dans la Section 1.8, nous passons en revue et comparons les travaux existants qui ont étendu ces
méthodes d’optimisation aux surfaces, en évaluant leurs contributions par rapport à cette thèse.

Chapitre 2 : Vers un cadre pour l’optimisation des domaines sur les variétés
Dans ce chapitre, notre objectif est d’établir un cadre pour l’optimisation géométrique de régions sur
des sous-variétés au sein d’une variété ambiante générale M . Nous adoptons le cadre de la géométrie
di�érentielle riemannienne, ce qui nous permet de tirer parti de divers résultats classiques de ce domaine.
Dans ce cadre, nous apportons des démonstrations de plusieurs résultats bien connus dans la littérature
sur l’optimisation de forme. De plus, nous explorons di�érentes méthodes pour optimiser des géométries
dans divers contextes.

Tout au long de ce chapitre, nous utilisons principalement la méthode de variation de frontière
initialement introduite par Hadamard dans son article fondateur [177]. Cette méthode a été largement
étudiée dans des travaux comme [22, 116, 185, 184, 301]. Dans un cadre riemannien, nous utilisons
l’application exponentielle, qui fournit une représentation équivalente de l’approche dite de π perturbation
de l’identité ∫ [184, 301]. Cette approche est l’une des plus couramment utilisées dans la littérature.
De plus, ce choix de représentation peut être vu comme un analogue de la π méthode des vitesses
∫ [116, 354, 355], où un champ de vecteurs ◊ sur Rn induit un flot représentant la trajectoire d’une
particule évoluant sur la frontière. Nous n’approfondirons pas les détails de ces méthodes classiques ici,
car elles sont largement discutées dans les ouvrages cités.

Il convient de noter que des idées similaires à celles présentées dans ce chapitre ont été explorées
dans [311], où le théorème de structure d’Hadamard est démontré sur des sous-variétés, et où les
surfaces fissurées sont étudiées dans ce modèle. Plus récemment, [285] a utilisé des idées équivalentes à
celles présentées dans ce chapitre pour le calcul de dérivées de forme directionnelles d’ordre supérieur
sur des sous-variétés. Cependant, ces travaux di�èrent légèrement de notre cadre, car ils considèrent
spécifiquement des sous-variétés de l’espace ambiant Rn, tandis que nous considérons l’espace ambiant
comme une variété riemannienne complète M , ce qui conduit naturellement à l’utilisation de l’application
exponentielle comme forme équivalente de perturbation de l’identité ou de la méthode des vitesses. Ce
choix nous permet de tirer parti de la théorie de la géométrie di�érentielle riemannienne, qui est bien
développée et largement étudiée.

Notre sélection de cette théorie n’est pas inédite. Par exemple, l’étude [188], qui se concentre sur
les dérivées de forme via les formes di�érentielles, présente plusieurs approches élégantes et avantages,
notamment la description indépendante des coordonnées des modèles et la séparation claire des invari-
ants sous les transformations homéomorphes. Dans notre étude, nous avons constaté que l’adoption
d’une perspective riemannienne conduit généralement à des démonstrations plus élégantes et o�re une
compréhension plus intrinsèque des aspects géométriques de l’optimisation de forme. Cependant, cela
se fait au prix d’une rigueur mathématique accrue en raison du langage de la géométrie di�érentielle
riemannienne.
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Enfin, il convient de noter qu’une perspective riemannienne, abordée di�éremment, a déjà été explorée
dans [287], où l’ensemble des formes est considéré comme une variété riemannienne, et W 1,Œ(Rn, Rn) est
regardé comme l’espace tangent. En général, l’objectif de cette approche est de considérer l’ensemble de
toutes les formes comme une variété riemannienne abstraite de dimension infinie. Cela se distingue de
notre cadre, qui voit les formes comme des sous-variétés d’une variété ambiante et cherche à les déformer
en utilisant la méthode de variation de frontière.

Le chapitre est organisé comme suit : Dans Section 2.1, nous étendons la méthode de variation de
frontière d’Hadamard au cas général d’une variété riemannienne M , en utilisant l’application exponentielle
exp : TM æ M pour relier le fibré tangent aux points de la variété. Ensuite, dans Section 2.2, nous
discutons de l’utilisation des fonctions distance signées pour représenter les domaines plongés dans la
variété riemannienne, et nous étendons plusieurs résultats classiques de l’optimisation de forme à ce cadre
plus général. Enfin, dans Section 2.3, nous présentons des résultats généraux liés au calcul des dérivées de
forme et à leurs formes (c’est-à-dire le théorème de structure d’Hadamard).

Chapitre 3 : Èvolution adaptée au corps sur une surface via une méthode
d’évolution de maillage basée sur l’ensemble de niveaux

La vaste tâche de représenter l’évolution d’un domaine G(t) µ Rd (avec d = 2 ou 3 en pratique) a suscité
de nombreuses recherches mathématiques et numériques. Ce sujet joue un rôle central dans diverses
disciplines appliquées, allant des graphismes informatiques et de la vision par ordinateur [79, 350] à la
simulation numérique de phénomènes physiques tels que la propagation des fractures [60] ou la dynamique
des interfaces fluides [90, 96], en passant par les problèmes inverses et l’optimisation de forme [22, 29, 69].

Plusieurs stratégies numériques ont été proposées pour aborder cette tâche, avec des avantages et des
inconvénients concurrentiels. Cependant, toutes les implémentations font face à un défi majeur : dans
des situations complexes et réalistes, le champ de vitesse V (t, x) qui pilote le mouvement de G(t) a une
origine physique et dépend de caractéristiques géométriques de haut niveau de cette région (notamment la
courbure de ˆG(t)), ou de la solution d’un problème aux limites posé sur celle-ci. Il est donc notoirement
di�cile de trouver un cadre permettant une description précise de G(t) pour e�ectuer des calculs précis
de ces quantités à tout moment t, ce qui exige idéalement un maillage exact et de haute qualité, tout en
traitant de manière robuste son évolution.

À cet égard, les stratégies lagrangiennes, qui suivent l’évolution d’un maillage exact de G(t) en déplaçant
ses sommets selon V (t, x) entre les itérations successives du processus, sont souvent compromises par
une dégradation sévère de la qualité du maillage, qui devient rapidement invalide et incompatible avec
les calculs, voir par exemple [132, 133]. Certes, plusieurs heuristiques améliorent la robustesse de cette
pratique. Par exemple, on peut alterner les déformations du maillage avec des étapes de remaillage
occasionnelles visant à améliorer sa qualité. De plus, on peut détecter et supprimer les éléments mal
formés avant qu’ils ne conduisent à une dégénérescence complète, ou même modifier la vitesse des
sommets internes du maillage pour réduire l’apparition de motifs se chevauchant, voir par exemple
[37, 46, 75, 123, 341].

Dans cet esprit, la technique récente des complexes simpliciaux déformables a démontré la capacité de
gérer des mouvements impressionnants en utilisant la formation d’éléments de maillage presque dégénérés
près de la frontière du domaine comme déclencheur de changements topologiques, voir [89, 88, 239]. Plus
récemment encore, la méthode X-mesh [240] procède en déplaçant les sommets du maillage de G(t) selon
V (t, x) jusqu’à ce que la mesure de certains éléments atteigne zéro. Le mouvement est alors relayé entre
les nœuds voisins tout en préservant la connectivité du maillage. Cette stratégie repose sur l’hypothèse
que les problèmes aux limites peuvent être résolus e�cacement sur des maillages comportant des éléments
dégénérés, sous certaines hypothèses sur leurs rapports de forme. Malgré ces avancées remarquables, il est
important de noter que de telles stratégies de déformation de maillage lagrangiennes sont généralement
réservées à la description de mouvements π relativement petits ∫ de l’ensemble G(t).

Pour surmonter les faiblesses des stratégies lagrangiennes, les techniques eulériennes de capture
d’interface reposent sur une description implicite de la forme en mouvement G(t). Parmi celles-ci, la
méthode des ensembles de niveaux, introduite dans [258], représente G(t) comme le sous-domaine négatif
d’une π fonction d’ensemble de niveaux ∫ auxiliaire „(t, ·) : Rd

æ R définie dans tout l’espace ambiant Rd,
voir [257, 293]. Le domaine G(t) n’est jamais maillé explicitement, étant redécouvert à chaque itération du
processus à partir des valeurs de „(t, ·). Bien que cela permette de décrire des mouvements arbitrairement
grands, une telle représentation implicite est malheureusement moins propice à la résolution précise
d’équations aux dérivées partielles définies sur G(t).

Ces questions centrales et populaires dans l’analyse numérique du mouvement d’un domaine G(t) ont
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reçu étonnamment peu d’attention lorsque le milieu ambiant est une variété, notamment une surface S
dans R3; pourtant, ce contexte alternatif englobe de nombreuses applications intéressantes :

• Les flots géométriques, tels que le flot de courbure moyenne ou le flot de Willmore, où le champ
de vitesse V (t, x) dépend de caractéristiques géométriques de haut niveau de G(t), peuvent être
adaptés au cas d’une région au sein d’une surface [316].

• Diverses opérations d’intérêt dans le domaine des graphismes informatiques sont commodément
formulées en termes de l’évolution d’une région au sein d’une surface. Par exemple, un modèle
populaire pour la génération de textures sur une surface repose sur la résolution d’une équation de
réaction-di�usion, voir par exemple [319, 328]; de même, la segmentation d’images sur des surfaces
peut être abordée grâce à une adaptation appropriée de l’algorithme de Chan-Vese [316].

• Divers problèmes d’évolution physique se produisent au sein d’une surface, voir par exemple [248] à
propos de la solidification d’un film fluide mince sur un substrat de surface, et [315] sur la dynamique
des changements de phase sur des surfaces en science des matériaux.

• Le souhait d’optimiser la forme de régions au sein d’une surface ambiante donnée se pose par
exemple dans la conception optimale de coques [318], de dispositifs électroniques curvilignes [208],
dans le contexte des écoulements de surface [117], ou dans l’identification de systèmes de fixation
optimaux pour des structures mécaniques, voir par exemple [108, 333].

À notre connaissance, les premières simulations numériques de l’évolution d’une région G(t) au sein
d’une surface S, proposées dans [87] et [204], portaient sur le flot de courbure géodésique. Celles-ci
utilisent une version de la méthode des ensembles de niveaux adaptée à la donnée de S en tant que patch
paramétré, ou en tant que graphe d’une fonction définie sur l’espace 2D, respectivement. Un cadre plus
général est proposé dans [54] et [84], où la surface fermée S :=

)
x œ Rd, Â(x) = 0

*
est représentée comme

l’ensemble de niveau 0 d’une fonction fixe Â : Rd
æ R, et G(t) = {x œ S, „(t, x) < 0} est le sous-domaine

négatif de S induit par une autre fonction d’ensemble de niveaux (dépendant du temps) „(t, ·) : Rd
æ R.

Ici et dans les investigations ultérieures dans ce cadre [53, 169, 281], l’équation régissant l’évolution de
la fonction d’ensemble de niveaux „(t, ·) est formulée dans tout l’espace Rd à l’aide d’opérateurs de
projection. Une autre série de contributions [231, 278] exploite la méthode des points les plus proches de
[230], dédiée à la résolution d’équations aux dérivées partielles sur des surfaces. Comme cette dernière
ne nécessite que la donnée d’une application associant à tout point x œ Rd un point le plus proche (en
termes de distance euclidienne) de la surface S, ce cadre permet à S d’être ouvert.

Le présent chapitre vise à introduire une méthodologie numérique robuste pour suivre des mouvements
arbitrairement grands d’une région G(t) au sein d’une surface ambiante S µ R3 – y compris des
changements de topologie – tout en maintenant une représentation maillée exacte de cette région tout au
long du processus. La stratégie proposée est une extension naturelle des travaux antérieurs [12, 13, 14] –
qui étaient consacrés à l’évolution des domaines de l’espace euclidien Rd – au contexte actuel où le milieu
ambiant est une surface S dans Rd. Elle combine deux représentations complémentaires de G(t) à chaque
étape de l’évolution : d’une part, G(t) est discrétisé explicitement, sous la forme d’un sous-maillage d’une
triangulation de surface de haute qualité T de la surface ambiante S, ce qui permet de calculer précisément
ses caractéristiques géométriques ou de résoudre les problèmes aux limites associés via la méthode des
éléments finis – et ainsi d’évaluer avec précision le champ de vitesse V (t, x). D’autre part, G(t) est décrit
implicitement via la méthode des ensembles de niveaux, comme le sous-domaine négatif d’une fonction
scalaire „(t, ·) : S æ R, de sorte que des mouvements arbitrairement grands de G(t) peuvent être réalisés.
Le point central de cette stratégie est un ensemble d’algorithmes de maillage e�caces et de schémas
numériques permettant de passer d’une représentation à l’autre.

Ce chapitre est organisé comme suit. Dans la Section 3.1, nous présentons plus en détail la question
du suivi de l’évolution d’une région au sein d’une surface. Ensuite, dans la Section 3.2, nous décrivons la
stratégie numérique proposée pour réaliser cette tâche et nous en détaillons les principaux ingrédients
; nous discutons notamment du calcul de la fonction distance signée à une région sur une surface, de
la résolution de l’équation d’évolution des ensembles de niveaux dans ce contexte, et de nos principales
opérations de remaillage dédiées aux triangulations de surface. Fait intéressant, ces méthodes numériques
sont implémentées dans des codes open-source qui peuvent être utilisés facilement de manière π bôıte
noire ∫. Quelques applications numériques de notre cadre sont présentées dans Sections 3.3 to 3.5 : après
avoir évalué son e�cacité sur un cas de test analytique, nous considérons le mouvement d’une interface
complexe représentant un front de feu, dont l’expansion au sein d’un paysage fixe est pilotée par des
quantités géométriques attachées au feu et à celles du paysage.
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Chapitre 4 : Optimisation de forme et de topologie des régions supportant
des conditions aux limites
Les préoccupations croissantes causées par la rareté des ressources matérielles et la nécessité flagrante
de réaliser des économies d’énergie ont rendu les techniques d’optimisation de forme et de topologie
plus actuelles que jamais au sein des communautés académiques et industrielles, où elles trouvent des
applications dans des domaines aussi variés que la mécanique des structures [52, 298], le génie civil et
l’architecture [3, 48], la mécanique des fluides [6, 58], l’électromagnétisme [158, 196, 218, 251], et le génie
biomédical [191, 270, 351].

Dans les cas classiques de tels problèmes, la conception étudiée est un domaine π massif ∫ � dans Rd

(d = 2, 3), qui est optimisé par rapport à un critère de performance J(�), sous des contraintes telles que
son volume ou son périmètre. En pratique, J(�) dépend généralement d’une fonction d’π état ∫ physique
u, caractérisée comme la solution d’une équation aux dérivées partielles posée sur �. La plupart du
temps, les régions de ˆ� supportant des conditions aux limites spécifiques associées à cette équation sont
imposées par le contexte et ne font pas l’objet d’une optimisation.

Le présent chapitre étudie des problèmes de conception optimale où la variable est précisément l’une
de ces régions de ˆ� supportant un type particulier de conditions aux limites dans la formulation du
problème physique. Parmi les diverses instances de ces questions, citons les suivantes :

• En électrostatique, � représente un conducteur, et le potentiel de tension u : � æ R est la solution
de l’équation de conductivité. Il est mis à la terre sur un sous-ensemble �D de ˆ�, et un flux
g : �N æ R est imposé sur une région disjointe �N µ ˆ� : ces e�ets sont modélisés par une
condition de Dirichlet homogène sur �D et une condition de Neumann inhomogène sur �N . La
partie restante � de ˆ�, qui est isolée de l’extérieur, est soumise à une condition aux limites de
Neumann homogène. Bien que �D et �N soient généralement fixes, on peut souhaiter minimiser
l’amplitude du champ électrique dans � en fonction de leur emplacement sur ˆ�.

• En acoustique, u : � æ R est la pression acoustique dans une salle �, solution de l’équation de
Helmholtz. La frontière ˆ� est décomposée en deux régions �N et �R : des conditions aux limites
de Neumann sont imposées sur �N , où une onde incidente subit une réflexion parfaite, tandis que
�R porte des conditions aux limites de Robin, tenant compte d’une absorption partielle de cette
onde. On peut alors se demander comment disposer �N et �R sur ˆ� pour minimiser la pression
acoustique dans �.

• En mécanique des structures, � est une pièce mécanique, attachée sur un sous-ensemble �D de sa
frontière ˆ�, et soumise à des charges de surface g : �N æ Rd, appliquées sur une région disjointe
�N µ ˆ� ; le champ vectoriel u : � æ Rd, représentant le déplacement de la structure, est la
solution du système d’élasticité linéaire. Habituellement, �D et �N sont fixés par le contexte, et
seule la partie restante, sans traction, �, est optimisée. Cependant, il peut être pertinent d’optimiser
l’emplacement de la région de fixation �D afin de minimiser le déplacement de la structure.

Ces questions s’inscrivent dans le cadre général de l’optimisation de forme d’un sous-ensemble G d’une
surface ambiante fixe S µ Rd. Les premières études dans ce contexte sont consacrées à la simulation des
flots géométriques sur S, notamment le flot de courbure moyenne.

Chapitre 5 : Rodin : Une bibliothèque numérique en C++20 pour l’optimisation
de forme et de topologie
Ce chapitre présente la conception et l’implémentation de Rodin, un cadre éléments finis léger et modulaire,
développé pour supporter les algorithmes numériques utilisés dans cette thèse. La bibliothèque est conçue
pour l’optimisation de forme et de topologie, o�rant des outils pour le ra�nement et le remaillage des
formes, ainsi que des mécanismes pour spécifier et résoudre des problèmes variationnels. En employant
des paradigmes de programmation intuitifs, Rodin permet des flux de travail d’optimisation e�caces et
flexibles, tout en gardant la structure du code claire et compréhensible.

Rodin est disponible sous la licence Boost Software License 1.0 à l’adresse suivante :

https://github.com/cbritopacheco/rodin

et la documentation est disponible à :

https://cbritopacheco.github.io/rodin.
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Tous les résultats numériques présentés dans cette thèse ont été produits à l’aide de Rodin. La bibliothéque
a été créé pour répondre à la di�culté de traduire des équations aux dérivées partielles (EDP) complexes
en code informatique, un processus souvent sujet aux erreurs et aux ine�cacités. Le cadre suit une
philosophie d’alignement de sa structure sur la notation mathématique des EDP, facilitant ainsi une
transition fluide entre la théorie et l’implémentation. Cet alignement o�re plusieurs avantages :

1. Facilité d’utilisation et compréhension intuitive : La conception de Rodin reflète la structure
mathématique des EDP, permettant aux utilisateurs de penser en termes familiers et de traduire
facilement leurs modèles théoriques en code, réduisant ainsi la charge cognitive liée à l’abstraction.

2. Réduction du taux d’erreur : En maintenant une ressemblance étroite avec les formulations
mathématiques originales, la probabilité d’erreurs lors de la transcription est minimisée, ce qui
conduit à des simulations plus fiables et plus précises.

3. Amélioration de la collaboration : La syntaxe intuitive et basée sur les mathématiques permet
à des experts de di�érents domaines (mathématiques, ingénierie, informatique) de collaborer, de
réviser et de contribuer au code sans avoir besoin de connaissances approfondies en programmation.

4. Valeur éducative : Pour les étudiants et les nouveaux venus, Rodin sert de passerelle éducative
entre les concepts théoriques des EDP et leur implémentation informatique, facilitant ainsi la
compréhension des deux aspects.

5. Correspondance directe entre théorie et code : Rodin permet une implémentation directe
des modèles théoriques, facilitant le développement et les tests dans des domaines complexes tels
que la dynamique des fluides, l’électromagnétisme et la mécanique des structures.

6. Flexibilité pour les modèles complexes : L’alignement étroit du cadre avec la notation
mathématique simplifie l’expérimentation avec des modèles non standard, des conditions aux limites
et des propriétés des matériaux, o�rant ainsi une plus grande flexibilité dans la recherche et le
développement.

7. Intégration avec les avancées théoriques : À mesure que les méthodes numériques et l’analyse
des EDP évoluent, l’adhésion de Rodin à la notation mathématique lui permet d’intégrer rapi-
dement de nouvelles techniques, garantissant que les utilisateurs restent à jour avec les dernières
méthodologies.

Tout au long de ce chapitre, des exemples d’application de Rodin dans l’optimisation de forme et de
topologie sont présentés. La modularité et la flexibilité du cadre en font un outil essentiel pour résoudre
e�cacement des problèmes d’optimisation dans divers domaines d’ingénierie. En résumé, Rodin simplifie
non seulement l’implémentation des algorithmes d’optimisation de forme et de topologie, mais il comble
également le fossé entre la théorie mathématique et le calcul pratique, améliorant ainsi à la fois la précision
et la convivialité dans les simulations numériques.

État de l’art pour l’optimisation de formes et de topologie des
surfaces
Malgré des avancées significatives dans le domaine de l’optimisation de formes et de topologie, la majorité
des recherches se sont concentrées sur les domaines volumiques, avec une attention limitée accordée à
l’optimisation d’une région sur une surface. Les méthodes existantes, examinées dans ce chapitre, sont
principalement conçues pour optimiser des domaines � µ Rd. Cependant, les problèmes basés sur les
surfaces présentent des complexités supplémentaires en raison de la géométrie complexe des surfaces,
nécessitant des techniques computationnelles spécialisées.

Pour aggraver la situation, et comme souligné dans l’introduction, l’optimisation de surfaces a des
applications dans plusieurs domaines. En transfert de chaleur, l’optimisation des surfaces d’échangeurs
thermiques améliore l’e�cacité thermique, réduit l’utilisation des matériaux et renforce la gestion
thermique globale [203, 33]. En aérodynamique et hydrodynamique, l’optimisation des surfaces, telles que
les ailes d’avion, les coques de bateaux et les pales d’éoliennes, réduit la trâınée et améliore l’e�cacité
de portance ou de propulsion [232, 160, 334]. En acoustique, la forme de la surface est cruciale pour
le contrôle du son, qu’il s’agisse de réduire le bruit des véhicules ou d’améliorer l’acoustique des salles
de concert [224, 272]. De plus, l’optimisation des structures à parois minces, telles que les coques et les
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membranes utilisées dans les coques de navire, les toits et les fuselages d’avion, a progressé grâce aux
méthodes basées sur les maillages simpliciaux et les grilles [91, 318, 338]. La diversité de ces applications
souligne le besoin urgent d’un cadre global pour relever ces défis.

Cette thèse comble le fossé dans l’optimisation de formes et de topologie basée sur les surfaces à
travers quatre contributions clés :

1. Développements théoriques et généralisations aux variétés, étendant les techniques d’optimisation
classiques aux contextes des variétés riemanniennes.

2. Évolution numérique des domaines sur des hypersurfaces immergées dans Rd, avec des stratégies
computationnelles adaptées aux défis de l’optimisation des surfaces.

3. Optimisation des conditions aux limites pour diverses EDPs, introduisant de nouvelles méthodes
pour optimiser les régions qui supportent des conditions aux limites dans di�érents contextes
physiques.

4. Développement d’outils de programmation open-source facilitant la mise en œuvre des méthodes
introduites dans cette thèse.

Maintenant, nous visons à détailler les travaux déjà existants dans la littérature et à préciser nos
contributions dans ces domaines clés.

Développements théoriques et généralisations aux variétés

La principale contribution liée à ce sujet est contenue dans Chapter 2.

Nous introduisons un cadre novateur pour l’optimisation géométrique de régions sur des sous-variétés au
sein d’une variété riemannienne ambiante générale M . Alors que la méthode classique de variation de
frontière, introduite à l’origine par Hadamard [177], a été largement explorée dans les espaces euclidiens
[22, 116, 185, 301], notre contribution étend cette approche au cadre riemannien, un contexte qui n’a pas été
abordé de manière approfondie dans les travaux antérieurs. En employant l’application exponentielle dans
une variété riemannienne, nous fournissons une représentation équivalente à la méthode de π perturbation
d’identité ∫, traditionnellement utilisée dans les espaces euclidiens, et l’adaptons aux sous-variétés dans
un cadre géométrique plus général.

Bien que certains travaux antérieurs, tels que [311] et [285], aient exploré des idées similaires—comme
l’application du théorème de Hadamard aux sous-variétés et le calcul des dérivées de forme directionnelles
de second ordre—ces études se limitent aux sous-variétés de l’espace ambiant Rn. En revanche, notre cadre
est situé dans un cadre plus général de variété riemannienne complète, où l’utilisation de l’application
exponentielle nous permet de prendre en compte la courbure intrinsèque de la variété, o�rant une base
plus polyvalente et rigoureuse pour l’optimisation de formes.

Notre approche s’appuie sur les avancées précédentes, telles que les travaux de [188], qui utilisent les
formes di�érentielles pour les dérivées de forme, et o�re un modèle indépendant des coordonnées
et préservant les invariants. Bien qu’adopter une perspective riemannienne augmente la rigueur
mathématique, nous soutenons que cela conduit à des démonstrations plus élégantes et à une compréhension
plus profonde des aspects géométriques de l’optimisation de formes. De plus, ce cadre se distingue d’autres
perspectives riemanniennes, telles que celle de [287], qui traite l’ensemble de toutes les formes comme une
variété abstraite de dimension infinie. Au contraire, notre focus reste sur les sous-variétés d’une variété
ambiante, en utilisant la méthode de variation de frontière pour les déformer.

En résumé, la principale contribution est le développement d’un cadre complet qui généralise les
techniques classiques d’optimisation de formes au cadre riemannien, o�rant de nouvelles perspectives et
outils pour l’optimisation de régions sur des sous-variétés courbées, un sujet qui a été relativement peu
exploré dans la littérature précédente.

Évolution numérique des domaines sur des hypersurfaces immergées dans Rd

La principale contribution liée à ce sujet est contenue dans Chapter 3.
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Le problème de la représentation et du suivi de l’évolution d’un domaine G(t) µ Rd (où d = 2 ou 3)
a été un sujet central dans plusieurs disciplines appliquées, telles que les graphiques informatiques, la
dynamique des fluides, la propagation des fractures et l’optimisation de formes. De nombreuses méthodes
numériques ont été développées pour relever ce défi, mais un problème commun demeure : équilibrer la
représentation précise de G(t) avec la gestion robuste de son évolution, en particulier lorsque le champ de
vitesse V (t, x) dépend de caractéristiques géométriques complexes comme la courbure ou la solution de
problèmes aux limites.

Les méthodes lagrangiennes, qui suivent directement le mouvement du maillage, sou�rent souvent
d’une dégradation du maillage à mesure que le mouvement progresse, ce qui conduit à des géométries
invalides et à des défis computationnels. Bien que des améliorations aient été apportées, comme les
techniques de remaillage ou la modification des vitesses internes du maillage [37, 75], ces méthodes
sont généralement limitées à de petites déformations. Certaines approches plus récentes, telles que le
Complexe Simplicial Déformable [89] et la méthode X-mesh [240], ont repoussé les limites des méthodes
lagrangiennes en abordant les grandes déformations et les changements topologiques. Cependant, ces
techniques rencontrent encore des di�cultés pour résoudre avec précision des problèmes aux limites sur
des maillages dégénérés.

D’autre part, les méthodes eulériennes, en particulier la méthode des ensembles de niveaux [258], o�rent
un cadre plus flexible pour représenter les grandes déformations de G(t) sans avoir besoin de maillage
explicite. Bien qu’elles puissent gérer des mouvements complexes, ces méthodes sont moins adaptées à la
résolution des EDP sur le domaine évolutif en raison de la nature implicite de la représentation.

Alors que l’évolution des domaines dans l’espace euclidien a été largement étudiée, relativement peu
de travaux ont été réalisés lorsque le milieu ambiant est une variété, telle qu’une surface S µ R3. Cela
est surprenant compte tenu du nombre d’applications importantes, incluant les flux géométriques, la
génération de textures basées sur les surfaces en infographie, et les processus physiques se produisant sur
les surfaces (par exemple, les changements de phase dans les matériaux). Bien que des e�orts précurseurs
comme [87] et [204] aient appliqué des méthodes d’ensembles de niveaux pour suivre les flux de courbure
géodésique sur des surfaces, ces approches étaient limitées à des paramétrisations spécifiques ou des
graphes de surfaces. Des cadres plus généraux ont été introduits plus tard, tels que ceux utilisant une
fonction d’ensemble de niveaux fixe pour décrire la surface S et le domaine G(t) évoluant en son sein
[54, 84], ou la méthode du point le plus proche pour résoudre des EDP sur des surfaces [230].

Notre principale contribution est une nouvelle méthodologie numérique qui fait progresser l’état de
l’art en permettant de suivre des mouvements arbitrairement grands de G(t) sur une surface ambiante
S µ R3, tout en préservant à la fois la topologie et une représentation maillée de haute qualité tout
au long du processus. En nous appuyant sur les travaux précédents sur l’évolution des domaines dans
l’espace euclidien [12, 13, 14], nous étendons ces techniques au cas où le milieu ambiant est une surface.
Notre approche combine deux représentations complémentaires :

1. Une discrétisation explicite de G(t) comme un sous-maillage d’une triangulation de haute qualité
de S, permettant des calculs géométriques précis et la résolution de problèmes aux limites.

2. Une représentation implicite par ensemble de niveaux de G(t), permettant des déformations et des
changements topologiques arbitrairement grands.

L’innovation clé de notre travail réside dans les algorithmes de maillage e�caces et les schémas numériques
qui permettent des transitions fluides entre ces deux représentations, surmontant ainsi les limitations des
méthodes lagrangiennes et eulériennes des études précédentes.

Optimisation des régions supportant les conditions aux limites pour di�érentes
EDP

La principale contribution liée à ce sujet est contenue dans Chapter 4.

L’optimisation des régions supportant les conditions aux limites pour diverses équations aux dérivées
partielles (EDP) est un domaine en pleine expansion, avec de nombreuses applications, mais qui reste
peu exploré. En élasticité, par exemple, l’optimisation des régions où des conditions aux limites de
Dirichlet et de Neumann sont imposées (comme dans les systèmes de fixation et de localisateurs) peut
améliorer la conception des points de fixation ou d’application de charges. Des études antérieures ont
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utilisé des méthodes d’optimisation topologique basées sur la densité, des algorithmes génétiques, des
réseaux neuronaux et des méthodes d’ensembles de niveaux [228, 201, 289, 332, 333, 345]. En acoustique,
des recherches ont porté sur l’optimisation de la distribution de matériaux absorbants (conditions aux
limites de Robin) afin de minimiser la pression sonore, comme démontré dans [119].

Des travaux récents, comme [318], utilisent couramment l’optimisation basée sur la densité sur des
maillages fixes, tandis que les méthodes d’évolution de maillage adaptées au corps, dérivées de travaux tels
que [14], ont été appliquées pour suivre de grandes déformations, comme l’illustre [234], qui a optimisé
les valeurs propres de Neumann sur une sphère 3D. Cependant, ces méthodes sont souvent spécifiques à
des cas particuliers et manquent d’un cadre unifié pour traiter l’optimisation de formes et de topologie
des régions supportant des conditions aux limites. Ce manque laisse les cadres théoriques et les stratégies
pour aborder les grandes déformations ou les changements topologiques relativement sous-développés,
malgré l’importance de ces problèmes dans de nombreux domaines.

En s’appuyant sur les contributions théoriques de [108] et [56], notre travail propose un cadre complet
pour l’optimisation de formes et de topologie des régions G µ ˆ� supportant des conditions aux limites
pour des EDP sur un domaine fixe �. Le travail de [108] o�re une étude rare sur l’optimisation de formes,
se concentrant sur la sensibilité d’une fonctionnelle J(G) à de petites perturbations di�eomorphiques de
G, tandis que [56] étend cette compréhension aux perturbations singulières où les conditions aux limites
basculent entre Dirichlet et Neumann.

Notre contribution combine et étend ces approches pour développer un flux de travail robuste. Nous
intégrons des dérivées de forme et topologiques pour évaluer la sensibilité de J(G) à la fois aux petites
déformations de ˆG et aux perturbations singulières en introduisant de petites régions de surface. Bien
que les calculs formels soient présentés dans le contexte de l’équation de conductivité, nos méthodes sont
adaptables à des applications plus complexes, telles que l’acoustique et la mécanique des structures.

Une innovation clé de notre approche est l’application duale de l’analyse asymptotique : d’abord, pour
lisser les transitions singulières entre les régions avec des conditions aux limites di�érentes, simplifiant
ainsi le calcul des dérivées de forme ; et ensuite, pour explorer les perturbations singulières en introduisant
de petites zones avec des conditions aux limites modifiées afin de quantifier la sensibilité topologique.
Cette stratégie nous permet de proposer un cadre novateur, flexible et généralisable qui n’était pas encore
disponible dans la littérature.

D’un point de vue théorique, nous proposons des méthodes formelles pour calculer à la fois les
dérivées de forme et les dérivées topologiques. Ces méthodes, détaillées dans le contexte plus simple de
l’équation de conductivité, peuvent être étendues à des scénarios plus complexes tels que l’acoustique
et la mécanique des structures. Bien que les dérivées de forme soient relativement simples pour une
gamme de problèmes, les dérivées topologiques nécessitent des adaptations plus complexes, que nous
abordons en détail. Notre travail démontre finalement comment l’analyse asymptotique peut simplifier la
répartition des conditions aux limites et permettre l’étude des perturbations singulières, élargissant ainsi
l’applicabilité des techniques d’optimisation de formes et de topologie.

Outils de programmation open-source pour le développement d’algorithmes
d’optimisation de formes et de topologie

La principale contribution liée à ce sujet est contenue dans Chapter 5.

La publication du code MATLAB d’optimisation topologique en 99 lignes, connu sous le nom de top99
[297], par Ole Sigmund en 2001 a marqué un moment décisif dans le domaine de l’optimisation structurelle
et multidisciplinaire. Ce code concis et accessible est rapidement devenu un outil éducatif largement
utilisé, inspirant de nombreuses contributions qui ont simplifié des algorithmes d’optimisation complexes
en formats accessibles. L’impact de top99 a dépassé son utilité immédiate, favorisant une culture
d’apprentissage, d’expérimentation et d’innovation au sein de la communauté de l’optimisation. Ces
dernières années, le nombre d’outils éducatifs et d’articles dans ce domaine a augmenté régulièrement
[324], avec de nombreux scripts ou outils simplifiés conçus pour des tâches spécifiques.

Bien que ces outils soient précieux pour illustrer des concepts de base et e�ectuer des optimisations
simples, ils s’avèrent souvent insu�sants pour traiter les complexités des problèmes réels. De nombreuses
tâches d’optimisation de forme impliquent des problèmes non linéaires [310], l’intégration avec des logiciels
de simulation [4], la génération de maillages et des solveurs mathématiques variés [202], des défis que
ces outils simplifiés ne peuvent pleinement prendre en charge. Des travaux récents, comme [104], ont
introduit des bibliothèques et des dépôts utiles, mais ils viennent souvent avec de multiples dépendances
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et nécessitent une expertise technique considérable. Des tendances similaires se retrouvent dans d’autres
outils scientifiques comme [227, 107, 18], qui, bien qu’enrichis techniquement, sont mieux adaptés au
prototypage académique qu’aux applications robustes et évolutives requises dans des scénarios plus
complexes. Pour véritablement répondre aux besoins des ingénieurs et des chercheurs, les logiciels
d’optimisation de formes doivent prioriser l’évolutivité, l’intégration et les performances. Sans une
bibliothèque robuste et bien conçue, les utilisateurs sont contraints de développer des solutions ad hoc,
entrâınant des flux de travail ine�caces, un temps de développement accru et des résultats incohérents.

En réponse à ces limitations, nous introduisons Rodin, une bibliothèque C++ conçue pour fournir
une solution complète pour l’optimisation de formes et de topologie. Contrairement aux outils existants,
Rodin est un cadre modulaire et léger d’éléments finis qui intègre des algorithmes d’optimisation de formes
et de topologie dans une seule interface de programmation (API). Rodin est conçu pour être évolutif,
permettant aux utilisateurs de passer sans di�culté du prototypage à des problèmes plus complexes sans
nécessiter une expertise technique approfondie ni de multiples dépendances.

Rodin o�re une suite complète de fonctionnalités essentielles pour l’optimisation avancée de formes et
de topologie, toutes intégrées en interne. Celles-ci incluent :

• Le ra�nement de formes et le remaillage via MMG [103].

• Le calcul des distances des domaines à l’aide de MSHDIST [105].

• L’advection des fonctions d’ensembles de niveaux via une intégration avec la bôıte à outils computa-
tionnelle ISCD [66, 106].

Ces outils ont été testés et éprouvés pendant des années dans le contexte de l’optimisation de formes
et sont directement intégrés dans Rodin, étant donné qu’ils sont codés en C. En tant que bibliothèque
C++, Rodin peut interagir nativement avec le C, assurant une intégration fluide et des performances
optimales. Rodin introduit également une approche inspirée de FreeFem++ pour définir des problèmes
variationnels, combinant prototypage rapide et convivialité sans sacrifier l’interopérabilité. Il utilise la
méthode des éléments finis pour assembler les opérateurs de rigidité et les vecteurs de masse associés,
souvent employés pour simuler des problèmes physiques. Cette approche améliore la facilité d’utilisation
tout en maintenant la flexibilité nécessaire pour traiter des problèmes complexes. La bibliothèque fournit
également un accès à une gamme de solveurs linéaires, y compris des solveurs de Krylov comme GMRES
[279] et des solveurs directs comme UMFPACK [112], tous entièrement intégrés dans l’écosystème C++.
Cela élimine le besoin de logiciels externes, avec des bibliothèques tierces directement incorporées dans le
système de compilation de la bibliothèque.

À notre connaissance, Rodin est une contribution novatrice dans le domaine, aucune autre bibliothèque
C++ n’o�rant ce niveau d’intégration, de flexibilité et d’évolutivité pour l’optimisation de formes et de
topologie.

Contributions
Cette recherche a donné lieu à deux prépublications. La première est basée sur le Chapitre 3 et la seconde
sur le Chapitre 4.

• C. Brito-Pacheco, C. Dapogny. Suivi adapté au corps sur une surface via une méthode d’évolution
de maillage basée sur l’ensemble de niveaux, soumis (2023).

• E. Bonnetier, C. Brito-Pacheco, C. Dapogny. Optimisation numérique de forme et de topologie des
régions supportant des conditions aux limites, en préparation (2024).

Ces travaux ont été présentés lors des événements suivants :

• CANUM 2024. Été 2024. Optimisation de forme et de topologie des régions supportant des
conditions aux limites.

• WCSMO 2023. Été 2023. Optimisation de forme et de topologie des régions supportant des
conditions aux limites.

• MFEM Community Workshop 2022. Rodin : Un cadre moderne et léger en C++17 pour l’optimisation
de forme, de densité et de topologie.
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Notation

• N denotes the set of natural numbers.

• R denotes the real number line.

• An denotes the n-product �n

i=1A of the set A

• Given a map f : A æ B, its image and domain are denoted by Im(f) and Dom(f), respectively.

• a π b is read as “a is much less than b”.

• If ◊ : Rd
æ Rd is a vector field we may write ◊ = (◊1, . . . , ◊d). Additionally, the i-th derivative of

the j-th component is denoted ˆ◊j

ˆxi
or in a shorthand manner ˆxi◊j .

• Measure of a set � is denoted by |�|

• If a set � is compactly contained in D, we denote it by � µµ D.

• GLd(R) is the set of invertible square matrices in Rd◊d.

• A≠1 is the inverse of A œ GLd(R).

• At is the adjoint or transpose of a real matrix A.

• A≠t :=
!
A≠1"t

• The Fréchet di�erential of a mapping f at the point u in the direction û is denoted by Df(u)(û).

• The Sobolev space W 1,Œ(Rd; Rd) is known as the space of Lipschitz functions, endowed with norm

||u||W 1,Œ := sup
xœRn

(|u(x)| + |Òu(x)|) (0.1)

• Hp

�(�) := {u œ Hp(�) | u = 0 on �}.

• CŒ
0 (�) denotes the space of smooth, compactly supported functions in �.
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Introduction

What is shape and topology optimization?
In modern engineering, the quest for optimal designs has driven significant advances in the field of shape
and topology optimization. These methodologies are essential for creating designs that meet specific
performance criteria while minimizing material usage. As industries such as aerospace, architecture, and
biomedical engineering continually push the boundaries of possibility, the demand for innovative design
approaches has reached unprecedented levels.

Shape optimization focuses on refining the geometry of a structure, while topology optimization
allows for a radical reimagining of the material distribution within a fixed computational space. Both
approaches have broad applicability across various domains, o�ering insights into natural phenomena
and even inspiring the formulation of new mathematical problems. Beyond theoretical investigation
[186, 320, 70], some examples of these diverse practical domains include architecture [327, 352, 48], geology
[187], material science [181, 72, 73], fluid mechanics [241, 242, 107, 144], computer vision and image
processing [126, 125, 124].

The process of optimizing a shape involves several key steps. Initially, a specific goal must be
defined—whether minimizing material usage, reducing drag, maximizing strength, or enhancing heat
transfer. Next, the physical parameters and particularities that influence the shape, such as geometric
dimensions, material properties, or boundary conditions, must be identified. It is also crucial to enforce
constraints, which may be physical, mechanical, or geometrical via appropriate optimization algorithms.
Common techniques include gradient-based methods, evolutionary algorithms, each o�ering unique
strengths depending on the specific requirements of the problem at hand. Specific examples obtained via
these techniques are illustrated in Fig. 1.

The continuous development and application of these optimization strategies hold the promise of
significantly improving our capacity to design and manufacture structures that are not only e�cient but
also sustainable and adapted to the evolving demands of the future. The need to provide answers to these
challenges contribute the primary motivation that drives our work.

Why extend these techniques to the case of surfaces ?
Recently, there has been growing interest in extending optimization techniques to focus specifically on
domains within surfaces. This shift emphasizes surface optimization over the entire domain, which is
particularly relevant in applications where surface properties are more critical than bulk characteristics.
Most existing techniques in shape and topology optimization for surfaces are typically applied to shells
and membranes [91]. In a nutshell, shells are very thin structures, such as the hull of a ship, building
roofs, and aircraft fuselages. A lot of fundamental work has already been done in [3, 148] which employs
simplicial mesh deformations, while some recent work [318, 338] utilizes a grid based approach. However,
surface optimization need not be limited to shell structures, as its potential applications are broad and
diverse:

• Heat transfer. In cooling systems, the design of heat exchanger surfaces plays a critical role in
determining their heat transfer e�ciency. By optimizing the shape and topology of these surfaces,
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it is possible to significantly improve thermal performance, reduce material usage, and enhance
overall heat management in both electronic and industrial applications. This topic has garnered
considerable attention in recent studies [203, 33].

• Aerodynamics and hydrodynamics. Air and fluid flows around surfaces such as airplane wings
[232], boat hulls [160], or wind turbine blades [334] can be optimized to reduce drag and improve lift
or propulsion e�ciency. Surface topology optimization enables the design of lighter, more e�cient
structures by accounting for flow behavior over the surface.

• Acoustics. Acoustic performance is often influenced by surface shape and properties. Optimizing
surfaces can reduce unwanted noise or enhance desired sound characteristics in applications such as
vehicle design [224, 271], concert halls [272], and noise-reducing structures [119, 129].

Despite the increasing interest in this area, there is still no comprehensive framework to address these
types of problems. Significant work remains, particularly in identifying e�cient shape representations on
surfaces and developing robust mathematical techniques to solve these challenges. In light of this, the
main motivation behind this thesis is to provide general, numerical and theoretical techniques to conduct
the shape and topology optimization of domains in surfaces embedded in Rd.

Scope of the thesis
This thesis focuses on the optimization of regions embedded in a hypersurface of Rd. From the conceptual
viewpoint, the research revisits classical optimal design methods, such as Hadamard’s boundary variation
technique and the concept of the topological derivative, which we adapt to the surfacic context at hand.
Meanwhile we propose a more general theoretical framework framed within Riemannian geometry, for
the general optimization of a region within a Riemannian manifold. The numerical application of this
theoretical groundwork calls for a numerical strategy designed to track large-scale motion of regions on
three-dimensional surfaces under complex velocity fields. The approach matched in this thesis integrates
precise geometric meshing with the level set method, enabling accurate computations and capturing
significant deformations, including topological changes. The discussion focuses on optimizing regions
that support specific boundary conditions in the formulation of a physical boundary value problem.
This involves analyzing partial di�erential equations with Dirichlet, Neumann, and Robin boundary
conditions to optimize the shape and topology of these regions. Practical applications of these techniques
are demonstrated in scenarios such as cooling systems of mechanical components, clamp-locator systems,
in structural supports, and acoustic cloaks. The backbone of these practical applications, motivates the
implementation of an open-source C++20 library specifically developed for shape optimization. The
library’s design paradigms are discussed, with implementation examples focused on surface optimization,
along with an overview of its syntax and suggestions for future enhancements. In summary, this
thesis extends the range of applications of shape and topology optimization techniques to the realm of
region within surfaces in Rd, advancing both the theoretical and practical understanding of how these
optimizations can be applied to complex geometries within a variety of engineering and design contexts.
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(a) A tree-like structure minimizes material and cooling by e�ciently distributing heat through
branching pathways, which increases surface area for cooling and uses less material to achieve e�ective
heat dissipation compared to a uniformly thick plaque. The design has been obtained via the SIMP
method (see [51, 275]).

(b) A cantilever minimizes compliance (which is a measure of flexibility or deformation under load)
by e�ciently distributing the material to resist bending. The cantilever design typically maximizes
sti�ness at the fixed end, where the bending moment is greatest, and tapers toward the free end, where
the moment is less. This design has been obtained via the level-set method in conjunction with shape
derivatives (see §2 of [15] for the overall methodology).

Figure 1: Examples of optimal designs obtained via di�erent shape and topology optimization techniques.
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Summary of chapters

Chapter 1: A review of shape and topology optimization
In this preliminary chapter, we provide a general overview of classical techniques in shape and topology
optimization. After some light historical context in Section 1.1, we introduce Hadamard’s renowned
method of boundary variation in Section 1.2. There we explain how to compute shape derivatives and
some of the principal results related to them, while in Section 1.3 we explain how to perform the inference
of smooth descent directions from this datum. In Section 1.4, we explain the concept of the topological
derivative. In Section 1.5, we revisit the widely known level-set method and discuss its application
in a “body-fitted” approach. To demonstrate these techniques in practice, we present the classical
cantilever problem in Section 1.6. Additionally, in Section 1.7, we address the limitations and variations
of these methods, providing a broader perspective on the field, including the phenomenon known as
homogenization. Lastly, in Section 1.8, we review and compare the existing techniques and works that
have extended these optimization methods to surfaces, and we evaluate these contributions in relation to
those made in this thesis.

Chapter 2: Towards a framework for the optimization of domains on manifolds
In this chapter, we establish a framework for the geometric optimization of regions on submanifolds within
a general ambient Riemannian manifold M . By utilizing classical results from Riemannian di�erential
geometry, we rigorously prove well-known results in shape optimization and explore various methods
for optimizing geometries in di�erent contexts. The primary method used is the boundary variation
technique, originally introduced by Hadamard, with perturbations represented via the exponential map,
following the approach often referred to as the “velocity method.” This widely used method allows us to
delve into the geometric intricacies of shape optimization within the Riemannian framework, providing a
solid foundation for future research on shape optimization on curved manifolds.

The chapter is organized as follows: In Section 2.1, we extend Hadamard’s boundary variation method
to the general case of a Riemannian manifold M , using the exponential map exp : TM æ M to relate
the tangent bundle to points on the manifold. Next, in Section 2.2, we discuss the use of signed distance
functions to represent domains embedded in the Riemannian manifold, and we extend several classical
shape optimization results to this more general setting. Finally, in Section 2.3, we present general results
related to the computation of shape derivatives and their forms (ie. Hadamard’s structure theorem).

Chapter 3: Body-fitted tracking within a surface via a level set based mesh
evolution method
This chapter introduces a numerical strategy for tracking the large-scale motions of a region G(t) on
a three-dimensional surface S, driven by a complex velocity field V (t, x). Extending previous work on
evolving domains in Euclidean space Rd [12, 13, 14], the approach is adapted to surface-based problems.
Two complementary representations of the region G(t) are utilized: an exact mesh representation for
precise geometric and finite element computations, and an implicit level set representation to handle large
deformations and topological changes. E�cient numerical algorithms enable seamless transitions between
these representations as required by the computational task.

The chapter proceeds by first outlining the problem of tracking region evolution on a surface in
Section 3.1, followed by a detailed explanation of the numerical strategy in Section 3.2. This includes
key components such as signed distance function calculations, level set evolution, and surface-specific
remeshing operations. The methods are implemented in open-source software, facilitating their use in
various applications. Finally, in Sections 3.3 to 3.5, we present numerical applications that demonstrate
the e�ectiveness of the framework, including the motion by the conormal field, and simulations of fire
front propagation, showcasing the robustness and versatility of the proposed approach.

Chapter 4: Shape and topology optimization of the regions supporting bound-
ary conditions
This long chapter deals with the main motivation of thesis. It focuses on a specific class of shape and
topology optimization problems, where the goal is to optimize a region G on the boundary ˆ� of a
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domain �, which supports particular boundary conditions in the formulation of a physical boundary
value problem.

The chapter opens with Section 4.1, where we present the mathematical framework for optimizing
regions that support boundary conditions. These techniques are categorized into two main approaches:
geometric optimization and topological optimization. Geometric optimization is covered in Section 4.2,
where we describe the instance of Hadamard’s method in the context of surfaces, drawing on the work
of [108]. Topological optimization, introduced in Section 4.3, is a key contribution of this thesis. It
introduces the concept of topological sensitivity for creating new regions with boundary conditions. This
contribution builds on prior work [56], which explores the asymptotic expansion between the “background”
potential and its perturbed version by a slight change in the definition of the boundary conditions in the
conductivity equation. To provide the necessary foundation for this work, we revisit essential concepts
related to Sobolev spaces and the single layer potential in Sections 4.4 and 4.5.

In Section 4.6, we establish a baseline analysis by examining the sensitivity of introducing a homoge-
neous Dirichlet boundary within a Neumann boundary in the context of the conductivity equation. This
analysis is then extended to other physical models, including the Helmholtz equation in Section 4.7 and
linear elasticity in Section 4.8. Building on these analyses, we propose a general method for shape and
topology optimization of regions supporting boundary conditions in Section 4.10, leveraging the evolution
strategy outlined in Chapter 3. The chapter prepares several real-world applications of these methods in
Sections 4.7, 4.11, 4.13 and 4.14.

Chapter 5: Rodin: A numerical C++20 library for shape and topology optimization
In this chapter, we discuss the implementation and design of our C++ library, which we developed to
implement the numerical algorithms used in this thesis. Here we explain the programming paradigms
utilized in the design of the library which allow the easy implementation of various shape optimization
methods, and showcase some of the examples we have obtained. We draw attention to the particular
syntax of the library which permits the easy comprehension of the resulting programming code.

Contributions
This research has given rise to two preprints. The first one based on Chapter 3 and the second one on
Chapter 4.

• C. Brito-Pacheco, C. Dapogny. Body-fitted tracking within a surface via a level set based mesh
evolution method, submitted (2023).

• E. Bonnetier, C. Brito-Pacheco, C. Dapogny. Numerical shape and topology optimization of the
regions supporting boundary conditions, in preparation (2024).

It has been presented at the following occasions:

• CANUM 2024. Summer 2024. Shape and topology optimization of the regions supporting boundary
conditions.

• WCSMO 2023. Summer 2023. Shape and topology optimization of the regions supporting boundary
conditions.

• MFEM Community Workshop 2022. Rodin: Lightweight and Modern C++17 Shape, Density and
Topology Optimization Framework.
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Chapter 1

A review of shape and topology opti-
mization

This chapter aims to o�er a comprehensive review of “classical” shape and topology optimization methods,
tracing their development, applications, and the theoretical advancements that have shaped the field. We
explore the historical context and key developments that have propelled shape and topology optimization
to the forefront of modern design practices. We review the mathematical formulations that underpin these
methods, including the use of finite element analysis, sensitivity analysis, and optimization algorithms.
The chapter highlights the di�erences and synergies between shape and topology optimization, providing
insights into how they can be used in tandem to achieve superior design outcomes.

1.1 Historical context
The origins of shape optimization can be traced back to the calculus of variations, a branch of mathematical
analysis that emerged in the 18th century, pioneered by mathematicians such as Leonhard Euler (15 April
1707 – 18 September 1783) and Joseph-Louis Lagrange (25 January 1736 – 10 April 1813). Their early work
[138, 216] laid the groundwork for optimizing functionals, which are mathematical expressions involving
integrals over a domain. One of the earliest and most significant problems connected to shape optimization
is the isoperimetric problem, which seeks to determine the shape that maximizes the area enclosed by
a given perimeter. This problem intrigued ancient Greek mathematicians, such as Zenodorus (circa
200 BC), who studied various polygonal figures and their area maximizing properties [180]. Zenodorus
demonstrated that among polygons with the same perimeter, the regular polygon encloses the largest
area, and that the circle encloses a larger area than any polygon with the same perimeter [206]. The
study of the isoperimetric problem was so appealing, that it later became a fundamental question within
the calculus of variations. Mathematically, the problem can be formulated as the following optimization
problem:

max
�µR2

Area(�) s.t. Per(�) = P, (A)

for some given P > 0, with Area(�) =
s

� dx and Per(�) =
s

ˆ� ds. The solution to (A) is well-known:

The shape that maximizes the enclosed area for a given perimeter is a circle.

This solution has by now been extensively studied, proved, and re-proved within various fields and through
di�erent techniques, many of which are closely related to shape optimization. For detailed discussions on
its solution and the field of isoperimetric inequalities, we refer the reader to [259, 262], as well as the
classical texts on the calculus of variations [161, 99].

In the early 20th century, shape optimization began to mould as a distinct discipline, largely due to
the contributions of Jacques Hadamard (8 December 1865 – 17 October 1963). Hadamard introduced
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(a) Leonhard Euler (b) Joseph-Louis Lagrange (c) Jacques Hadamard

the concept of boundary variations (the subject of Section 1.2), which is a nowadays a cornerstone in
the field. His work provided essential insights into how small changes in the shape of a domain a�ect
solutions to boundary value problems, a key consideration in shape optimization.

The latter half of the 20th century saw substantial advancements in shape optimization, driven by
the development of numerical methods and computational tools. Pioneers such as John von Neumann
and Stanislaw Ulam contributed to the development of computational techniques that could be applied
to shape optimization. The emergence of modern computers enabled the optimization of increasingly
complex shapes and domains, which in turn led to practical applications in various engineering and
physical sciences.

The introduction of finite element methods [92] and other numerical techniques (e.g. finite di�erences)
has also been pivotal in solving shape optimization problems in real-world scenarios by leveraging the
power of discretizing continuous shapes that appear in the real world, and simulating the physics behind
them.

In recent decades, shape optimization has further evolved with the integration of advanced techniques
such as level-set methods [67, 325, 21], topology optimization [52, 330, 298], genetic algorithms [299],
and most recently it has seen utilization with the virtual element method (see [49] for the basics) in the
semi-discrete optimal transport setting [109]. These modern approaches facilitate the optimization of
highly intricate shapes and structures and allow for the formulation of general optimization problems of
the form:

min
�µR

J(�) s.t. C(�) Æ 0, (P)

of which (A) is a special case. Here J(�) is the criterion to minimized constrained by C(�).
Today, shape optimization remains a vibrant area of research, with significant progress being made

in multi-disciplinary optimization, where shape optimization is integrated with other design variables,
such as material properties [50]. The integration of machine learning and artificial intelligence into shape
optimization processes is further expanding the possibilities for automated and intelligent design (see for
example [225, 335, 86]).

Overall, shape optimization has evolved from its classical origins in the calculus of variations to a
modern, computationally driven field with extensive applications. The milestones in its development
have solidified its status as an essential tool in engineering, physics, and beyond, with ongoing research
continuing to push the limits of what can be achieved.

1.2 Hadamard’s boundary variation method
Hadamard’s boundary variation method, a cornerstone in the field of shape optimization, provides
a systematic approach for analyzing how small perturbations in the boundary of a domain a�ect a
given functional. This method, initially introduced by French mathematician Jacques Hadamard in
his seminal article [177], is particularly significant in the study of boundary value problems, where the
shape or configuration of the domain plays a crucial role in determining the behavior of the solution.
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Figure 1.2: Domain � undergoing boundary variations characterized by the deformation vector field ◊.
The perturbed domain �◊ shows smooth modifications of the boundary.

At its core, Hadamard’s method involves the perturnation of the boundary to induce a notion of shape
derivative, which quantifies the sensitivity of a functional J(�) to infinitesimal geometrical deformations
of the domain. This derivative is instrumental in determining how slight modifications to the shape can
improve or deteriorate the performance of a system, making it a useful tool to solve a problem like (P).
Numerous authors have revisited this topic, discussing it in standard texts on shape optimization such as
[22, 185, 116, 183, 301], and the reader is referred to those texts for a comprehensive presentation. This
section serves as the basis of Chapter 2 and the geometrical optimization section of Chapter 4.

1.2.1 Definitions and generalities
The method involves considering a Lipschitz domain, denoted as � µ Rd, and examining the deformation
induced by the mapping:

x ‘æ (Id + ◊)(x), ◊ œ W 1,Œ(Rd, Rd) .

This deformation leads to a deformed domain, denoted as �◊, which is the image of � under this mapping:

�◊ := (Id + ◊)(�) = {x + ◊(x) : x œ �} .

A visual representation of this deformation is depicted in Fig. 1.2. Importantly, one may prove that
for su�ciently “small” values of ◊, the mapping x ‘æ x + ◊(x) becomes a Lipschitz di�eomorphism.
Consequently, any deformation �◊ retains the same topology as �. More specifically, the following holds.

Theorem 1.1. Let ◊ œ W 1,Œ(Rd, Rd) be such that ||◊||W 1,Œ(Rd,Rd) < 1. Then the mapping

(Id + ◊) : Rd
æ Rd

is a Lipschitz di�eomorphism.

Idea of proof. The proof relies on the fact that since the norm is strictly lower than 1, then its Neumann
series

q
Œ

k=0 ◊k is convergent, whence the invertibility [22, 140].
⌅
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The concept of varying the boundary in shape optimization calls for the notion of di�erentiability
with respect to the shape. This arises from the ability to shift the requirement for di�erentiability to the
underlying mapping responsible for the deformation of the boundary.

Definition 1.1 (Shape di�erentiability). The mapping � ‘æ J(�) is said to be shape di�er-
entiable at � if the mapping

W 1,Œ(Rd; Rd) æ R
◊ ‘æ J(�◊) = J ((Id + ◊)(�))

is Fréchet di�erentiable at ◊ = 0. On the other hand, there exists a continuous linear mapping
L : W 1,Œ(Rd; Rd) æ R such that

J(�◊) = J(�) + L(◊) + o(◊), with lim
◊æ0

|o(◊)|
||◊||W 1,Œ(Rd; Rd) = 0

We call J Õ(�) := L, the shape derivative of J at �.

Let us denote by nˆ�(x) the unique outward-pointing unit normal vector field along the boundary ˆ�.
A significant theorem concerning the nature of shape derivatives states that, under certain smoothness
conditions for both the considered functional and the domains involved, the shape derivatives predomi-
nantly depend on the normal trace component ◊ · nˆ� of the deformation ◊ applied to the boundary ˆ�.
This theorem, widely known as Hadamard’s structure theorem, carries substantial importance in the field.

Theorem 1.2 (Hadamard’s structure theorem). Let � µ Rd be a smooth bounded open subset
and J(�) be a shape di�erentiable functional. Let ◊1, ◊2 œ W 1,Œ(Rd, Rd) be such that ◊2 ≠ ◊1 œ

C1(Rd, Rd) and ◊1 · nˆ� = ◊2 · nˆ� on ˆ�. Then,

J Õ(�)(◊1) = J Õ(�)(◊2).

Proof. For the proof we refer to [184].
⌅

One can extract more structure out of the shape derivative J Õ(�)(◊). The following remark is of
significant importance.

Remark 1.1 (Structure of integral criterions). In many practical applications, the objective
function J(�) is often expressed as an integral involving the solution u� of a boundary value problem.
In such cases, the shape derivative J Õ(�)(◊) can be expressed more precisely as:

J Õ(�)(◊) =
⁄

ˆ�
f� ◊ · nˆ� ds, (1.1)

where f� : ˆ� æ R is a scalar field dependent on �. Already, this formulation simplifies the process
of finding a descent direction, which can be achieved by selecting ◊ = ≠f�nˆ�, so that:

J Õ(�)(◊) = ≠

⁄

ˆ�
f2

� ds < 0.

The fact that this quantity is negative proves that it is indeed a descent direction. Clearly, utilizing
Definition 1.1, we have:

J(�t◊) = J(�) ≠ tJ Õ(�)(◊) + o(t) < J(�),

for small t > 0.

1.2.2 Techniques and approaches to compute shape derivatives
The logical next step in investigating shape derivatives is to compute them. In this section, we provide a
brief review and presentation of shape derivatives, focusing on the methods used for their calculation. By
exploring these fundamental concepts, we lay the groundwork for the more in-depth discussions that will
follow in this thesis, setting the stage for a deeper exploration of shape optimization.
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Theorem 1.3. Let f œ W 1,1(Rd) and define the shape functional J by

J(�) :=
⁄

�
f(x) dx.

Then J is shape di�erentiable at any � and

J Õ(�)(◊) =
⁄

�
Ò · (f◊) dx, (1.2)

for any ◊ œ W 1,Œ(Rd; Rd) Furthermore, we have:

J Õ(�)(◊) =
⁄

ˆ�
◊ · nˆ� ds. (1.3)

Sketch of proof.. We must establish the Fréchet di�erentiability of ◊ ‘æ J(�◊) at ◊ = 0. To this end, we
perform a change of variables to obtain:

J(�◊) =
⁄

�
f ¶ (Id + ◊)| det(I + Ò◊)| dx .

To see that the integrand is di�erentiable at ◊ = 0 we must compute the di�erentials of the mappings
f ¶ (Id+◊) and ◊ ‘æ det(I +Ò◊). For the proof of the former we refer to [185] in which case the di�erential
is given by:

◊ ‘æ Òf · ◊.

For the latter we prove di�erentiability of the mapping A œ GL(R) ‘æ det(A) œ R at I, in which case the
di�erential is given by:

A ‘æ tr(A),

which instantly yields the formula for the di�erential of the original mapping:

◊ ‘æ Ò · ◊.

Applying the product rule yields (1.2). Moreover if � is Lipschitz then an integration by parts yields
(1.3).

⌅

A related result is the one dealing with the shape derivative of an integral over the boundary ˆ�. The
proof follows a similar line of reasoning as that of the previous theorem, involving a change of variables
and the computation of the di�erential of the integrand. We omit the proof in this context but refer
interested readers to [185] for a comprehensive proof.

Theorem 1.4. Let g œ W 1,2(Rd) and define the shape functional

J(�) :=
⁄

ˆ�
g ds.

Then, J is di�erentiable at any (bounded domain) � of class C2 and its shape di�erential (restricted
to smooth deformations W 1,Œ(Rd; Rd) reads:

J Õ(�)(◊) =
⁄

ˆ�

3
ˆg

ˆnˆ�
+ Ÿg

4
◊ · nˆ� ds,

where Ÿ = Ò · (nˆ�) denotes the mean curvature of ˆ�.

The subsequent corollaries present the application of the two preceding theorems to two widely studied
quantities of interest: the volume and perimeter of a shape �.
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Corollary 1.1 (Derivative of the volume). Let � be Lipschitz. Define the volume of a shape
� by

Vol(�) :=
⁄

�
dx.

Then, the volume is shape di�erentiable at � and its shape derivative is given by:

VolÕ(�)(◊) =
⁄

�
Ò · ◊ dx =

⁄

ˆ�
◊ · nˆ� ds.

Corollary 1.2 (Derivative of the perimeter). Let � be of class C2. Define the perimeter of
a domain � by

Per(�) :=
⁄

ˆ�
ds.

Then, the perimeter is shape di�erentiable at � and its shape derivative is given by:

PerÕ(�)(◊) =
⁄

ˆ�
Ÿ ◊ · nˆ� ds

These corollaries for the shape derivatives of volume and perimeter are widely utilized in practical
applications to impose constraints or apply penalties associated with these geometric properties. For
instance, consider a multi-criteria functional:

J(�) :=
⁄

�
j(u�) dx + ¸ Vol(�),

where the goal is to find the optimal shape � that minimizes a quantity dependent on the solution u� to
a boundary value problem, while simultaneously minimizing the volume of the shape. In this context, the
parameter ¸ > 0 serves as a penalization factor.

1.2.3 Shape derivatives of criterions depending on the solution to a boundary
value problem

In the majority of shape and topology optimization applications, our focus lies in functionals that rely
on the solution to a boundary value problem, which is intrinsically linked to the desired shape. This
problem, commonly known as the “state equation”, captures and describes the behavior of the underlying
physical system at play. To set ideas, we can consider the functional:

min
�µRd

J(�) =
⁄

�
j(u�) dx,

where j œ C2(R) and satisfies the growth conditions

’u œ R, |j(u)| Æ C(1 + |u|
2), |jÕ(u)| Æ C(1 + |u|), |jÕÕ(u)| Æ C, (1.4)

and where u� œ H1
0 (�) is the solution to the Laplace equation (1.5) with homogeneous Dirichlet boundary

conditions on the whole boundary ˆ�.
I

≠�u� = f in �
u� = 0 on ˆ �.

(1.5)

The computation of the shape derivative J Õ(�)(◊), relies on the calculation of the “derivative” of the map
� ‘æ u�, which requires a precise definition. To address this, we introduce the following concepts.

Definition 1.2 (Transport mapping). The transported mapping of u� is defined by:

W 1,Œ(Rd, Rd) æ H1
0 (�)

◊ ‘æ u�(◊) := u�◊ ¶ (Id + ◊)

With this in mind, we can consider the Fréchet derivative of this mapping and subsequently define the
notion of Lagrangian derivative.
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Definition 1.3 (Lagrangian derivative). Suppose that ◊ ‘æ u�(◊) is Fréchet di�erentiable at
◊ = 0. We then say that the map � ‘æ u� has a Lagrangian derivative at �, and we denote its
Fréchet di�erential by ů�(◊).

In contrast to the Lagrangian derivative, we can also consider the “Eulerian” derivative. For any fixed
point x œ �, we examine the derivative uÕ

�(◊)(x) of the mapping:

◊ ‘≠æ u�◊ (x),

as a mapping from W 1,Œ(Rd, Rd) to H1
0 (�). For fixed x, this derivative is well-defined within a

neighborhood of 0 in W 1,Œ(Rd, Rd) mapping into R because, for su�ciently small ◊ œ W 1,Œ(Rd, Rd), the
point x remains within the deformed shape �◊, where u�◊ is evaluated. However, for a boundary point
x œ ˆ�, this variation can be problematic if the vector field ◊(x) points inward, causing the point x to no
longer belong to �◊ or its boundary.

Unlike the Lagrangian derivative, which is defined not just pointwise but also as a mapping from
W 1,Œ(Rd, Rd) into H1

0 (�), allowing us to consider the Fréchet derivative of ◊ ‘æ u�(◊), the Eulerian
approach provides a di�erent perspective. If both the Eulerian and Lagrangian derivatives exist, the
chain rule implies that for any point x œ �,

ů�(◊)(x) = d
d◊

(u�◊ (x + ◊(x)))
----
◊=0

= uÕ

�(◊)(x) + Òu�(x) · ◊(x).

Thus, the Eulerian derivative can be expressed in terms of the Lagrangian derivative, leading to the
following definition.

Definition 1.4 (Eulerian derivative). The mapping � ‘æ u� has an Eulerian derivative uÕ

�(◊)
at � if it has a Lagrangian derivative and if, in addition, Òu� œ H1(�). The Eulerian derivative
uÕ

�(◊) œ H1(�) is then defined as:

uÕ

�(◊) = ů�(◊) ≠ Òu� · ◊.

We shall not use the Eulerian derivative here, instead preferring the Lagrangian approach.

Proposition 1.1. Let � be a bounded Lipschitz domain and suppose that u� has a Lagrangian
derivative ů�(◊) œ H1(R). Then, J(�) :=

s
� j(u�) dx is shape di�erentiable at � and

J Õ(�)(◊) =
⁄

�
(Ò · ◊)j(u�) + jÕ(u�)̊u�(◊) dx . (1.6)

The proof of this proposition consists in a simple application of the product and chain rule for Fréchet
derivatives. In this manner, we have reduced our problem of computing the shape derivative of the
functional J(�), to that of computing the Lagrangian derivative, which is where the actual complexity
lies. This computation is fairly standard (see for example [15]), and one can prove the di�erentiability of
the mapping ◊ ‘æ u�(◊) via an application of the implicit function theorem (Theorem B.3).

Theorem 1.5. The Lagrangian derivative ů�(◊) of the solution u� is characterized by the weak
formulation:

’v œ H
1
0 (�◊),

⁄

�
Òů�(◊) · Òv dx +

⁄

�

!
(Ò · ◊)I ≠ Ò◊ ≠ Ò◊

t
"

Òu� · Òv dx =
⁄

�
vÒ · (f◊) dx. (1.7)

Proof. The di�erentiability of the transported mapping ◊ ‘æ u�(◊) is admitted and we simply show the
calculation leading to the variational formulation (1.7). With this in mind we simply proceed with the
computation. We wish to characterize u�(◊) by its weak formulation. To this end, we consider the
variational formulation for u�◊ :

’v œ H1
0 (�),

⁄

�
Òu�◊ · Òv dx =

⁄

�
fv dx

Performing a change of variables yields

’v œ H1
0 (�),

⁄

�
|det (I + Ò◊)| (Òu�◊ · Òv) ¶ (Id + ◊) dx =

⁄

�
|det (I + Ò◊)| (fv) ¶ (Id + ◊) dx
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Now note that,
’v œ H1

0 (�), (Òv) ¶ (Id + ◊) = (I + Ò◊)≠1
Ò (v ¶ (Id + ◊))

Thus, after choosing v = w ¶ (Id + ◊)≠1 as a test function for w œ H1
0 (�), we may simplify the expression

to
’w œ H1

0 (�),
⁄

�
A(◊)Òu�(◊) · Òw dx =

⁄

�
|det (I + Ò◊)| f ¶ (Id + ◊)w dx

where A(◊) := |det (I + Ò◊)| (I + Ò◊)≠1(I + Ò◊)≠T . Hence we have characterized u�(◊) by a weak
formulation. Thus, we may now compute the Fréchet di�erential at ◊ = 0 utilizing the product rule, and
apply the definition of ů�(◊) to obtain the result.

⌅

In order to remove the implicit dependence on the Lagrangian derivative.

Theorem 1.6 (Volume form). The derivative J Õ(�)(◊) rewrites:

J
Õ(�)(◊) =

⁄

�
(Ò · ◊)j(u�) ≠

⁄

�
Ò · (f◊)p� dx +

⁄

�

!
(Ò · ◊)I ≠ Ò◊ ≠ Ò◊

t
"

Òu� · Òp� dx, (1.8)

where p� œ H1
0 (�) is solution the boundary value problem:

I
≠�p� = ≠jÕ(u�) in �

p� = 0 on ˆ�.
(1.9)

Proof. Note that by the Lax-Milgram theory, the weak formulation for p� œ H1
0 (�) solution to the adjoint

equation (1.9):

’v œ H1
0 (�),

⁄

�
Òp� · Òv dx = ≠

⁄

�
jÕ(u�)v dx,

is well-posed. Thus, choosing v = ů�(◊), we get:
⁄

�
Òp� · Òů�(◊) dx = ≠

⁄

�
jÕ(u�)̊u�(◊) dx.

From another side, recall the weak formulation for ů�(◊) and choose p� as a test function, so that in
particular:

⁄

�
Òů�(◊) · Òp� dx =

⁄

�
Ò · (f◊)p� dx ≠

⁄

�

!
(Ò · ◊)I ≠ Ò◊ ≠ Ò◊t

"
Òu� · Òp� dx .

Finally, we may recognize terms and substitute in (1.6) to obtain the result.
⌅

Formula (1.8) is commonly known as the “volumetric expression” for the shape derivative because it
does not follow the structure of (1.1), since it involves integrals over the entire domain � rather than
just its boundary. While it is possible to extract descent directions from this expression, the process is
somewhat complex; see Section 1.3 for further details. By assuming higher regularity for u� and p�, this
task can be simplified by transforming the expression into a surface integral that aligns with the structure
of (1.1). This transformation, however, demands greater regularity for u� and p�, typically ensured by
elliptic regularity theory. In this case, we can integrate by parts towards the

Proposition 1.2 (Surface form). Assume that u� and p� are in H2(�). Then,

’◊ œ W 1,Œ(Rd, Rd), J Õ(�)(◊) =
⁄

ˆ�
j(u�) ◊·nˆ� ds≠

⁄

ˆ�

ˆu�
ˆnˆ�

ˆp�
ˆnˆ�

◊·nˆ� ds≠

⁄

ˆ�
fp�◊·nˆ� ds.

(1.10)

Proof. We can integrate by parts, via Green’s identities (Proposition C.1), to obtain:
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J Õ(�)(◊) =
⁄

ˆ�
j(u�)◊ · nˆ� ds ≠

⁄

�
jÕ(u�)Òu� · ◊ dx (4.34)

+
⁄

ˆ�

3
(Òu� · Òp�)◊ · nˆ� ≠ (Òu� · ◊) ˆp�

ˆnˆ�
≠ (Òp� · ◊) ˆu�

ˆnˆ�

4
ds

≠

⁄

�
(Ò(Òu� · Òp�) · ◊ ≠ Ò

2p�Òu� · ◊ ≠ Ò
2u�Òp� · ◊) dx

+
⁄

�
(�u�(◊ · Òp�) + �p�(◊ · Òu�)) dx

≠

⁄

ˆ�
fp�◊ · nˆ� ds +

⁄

�
fÒp� · ◊ dx.

Recalling the interior conditions for u� and p�:

≠�u� = f, ≠�p� = ≠jÕ(u�),

and the identity:
Ò(Òu� · Òp�) = Ò

2u�Òp� + Ò
2p�Òu�,

we can verify that all the integrals supported on � cancel out:

≠

⁄

�
jÕ(u�)Òu� · ◊ dx ≠

⁄

�

!
Ò(Òu� · Òp�) · ◊ ≠ Ò

2p�Òu� · ◊ ≠ Ò
2u�Òp� · ◊

"
dx

+
⁄

�
(�u�(◊ · Òp�) + �p�(◊ · Òu�)) dx +

⁄

�
fÒp� · ◊ dx = 0.

Additionally, since u� and p� vanish on ˆ�, along with their tangential derivatives, we have the
following identity:

⁄

ˆ�

3
(Òu� · Òp�)◊ · nˆ� ≠ (Òu� · ◊) ˆp�

ˆnˆ�
≠ (Òp� · ◊) ˆu�

ˆnˆ�

4
ds = ≠

⁄

ˆ�

ˆu�
ˆnˆ�

ˆp�
ˆnˆ�

◊ · nˆ� ds,

so that we end up with the desired expression (1.10).
⌅

The main theoretical distinction between the surfacic and volumetric forms of the shape derivative
J Õ(�)(◊) lies in their regularity requirements. The choice of which form is more practical in applications
is more nuanced. The surfacic form o�ers the advantage of providing a descent direction immediately,
facilitating their implementation. Specifically, this form only needs to be evaluated at boundary points,
which are generally fewer in number than the interior points of the domain. On the other hand, the
volume form is typically more stable.

1.3 The Hilbertian extension-regularization procedure
This section outlines an e�ective and adaptable framework for deriving optimal descent directions, based
on the shape derivative J Õ(�)(◊). While widely recognized in shape optimization, the method’s origins
are somewhat obscure. It is explored in sources such as [67, 114, 267], particularly with regard to shape
optimization and inverse problems. In particular we refer the reader to §5.2 of [15] which presents the
procedure in straightforward manner, and is what most of this section is based on.

The approach centers on utilizing the inner product to compute a gradient ◊ from the di�erential
J Õ(�)(◊). As discussed in Section 1.2.1, shape derivatives for most of the functionals considered in this
chapter take the form

’◊ œ W 1,Œ(Rd, Rd), J Õ(�)(◊) =
⁄

ˆ�
f�◊ · n ds = (f�nˆ�, ◊)L2(ˆ�)d ,

where f� : ˆ� æ R is a scalar field dependent on the solution u� to the state equation and the adjoint
state p�. Here, (·, ·)L2(ˆ�)d denotes the usual inner product on L2(ˆ�)d. It is natural to propose the
descent direction:

◊ = ≠f�nˆ� on ˆ�. (1.11)
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In this case, for a small enough step · > 0, the descent of J(�) is expressed as:

J(�·◊) = J(�) ≠ ·

⁄

ˆ�
f2

� ds < J(�),

unless f� vanishes on ˆ�, indicating that � is stationary with respect to J(�). Ignoring for a moment
that W 1,Œ(Rd, Rd) is not a subset of L2(ˆ�)d, the form in (1.11) corresponds to the gradient of the
Fréchet derivative ◊ ‘æ J Õ(�)(◊), with respect to the L2(ˆ�)d inner product. This choice is generally
unsuitable for two reasons:

1. The deformation ◊ in (1.11) may be irregular, causing numerical artifacts in the computations of
u� or p�, and potentially introducing unwanted oscillations in �·◊. A smoother deformation field
is preferable.

2. The definition in (1.11) applies only on the boundary ˆ�. Despite the fact that f� (and nˆ�) can
often be extended to Rd, such extensions may be awkward, requiring a more appropriate extension
based on the objective.

Based on these considerations, the idea of velocity extension and regularization of the L2(ˆ�)d gradient
of J(�) allows to overcome both issues. Let H µ W 1,Œ(Rd, Rd) be a Hilbert space, with inner product
a(·, ·). We find g� œ H such that:

’w œ H, a(g�, w) = J Õ(�)(w).
Obviously, ≠g� is again a descent direction for J(�) if g� ”= 0, since for · > 0 small enough, the definition
of shape derivative yields:

J(�≠·g�) = J(�) ≠ ·J Õ(�)(g�) + o(·)
= J(�) ≠ ·a(g�, g�) + o(·)
< J(�).

Moreover, g� is a “better” descent direction than ≠f�n, insofar as:
• The Hilbert space H is made of “regular” vector fields (they are at least in W 1,Œ(Rd, Rd)); therefore,

the gradient g� œ H is naturally “regular”.

• Since H contains vector fields defined on the whole ambient space Rd (or, in practice, on the whole
computational domain D), then g� is naturally defined on Rd (respectively, on D).

The perhaps most natural choice is H = Hm(Rd)d, with the standard inner product:

a(u, v) =
ÿ

|–|Æm

⁄

Rd

ˆ–u

ˆx–
·

ˆ–v

ˆx–
dx. (1.12)

The Sobolev embeddings indeed guarantee that, if m > d

2 +1, H is continuously embedded in W 1,Œ(Rd, Rd)
(see e.g. [139]). Functions in H are “regular” insofar as their derivatives up to order m are square integrable
functions. Other choices are possible and we refer to [15] for further reading.

Remark 1.2. A common choice in practice is H = H1(Rd)d, even though it is not a subspace of
W 1,Œ(Rd, Rd). While this approach is practical and easy to implement, it may lack full mathematical
rigor. Additionally, an alternative to the inner product defined in (1.12) is:

a(u, v) = –2
⁄

Rd

Òu : Òv dx +
⁄

Rd

u · v dx,

where the constant – reflects a regularization length-scale, roughly indicating the extent to which the
gradient is smoothed near the boundary ˆ�.

An important aspect of this procedure is worth emphasizing. Although the surface shape derivative
J Õ(�)(◊) can be expressed in a volume form (see (1.8)), this form, while explicit in terms of ◊, does
not naturally provide a descent direction. By using this framework and choosing a Hilbert space like
H = H1(Rd)d with the inner product a(·, ·), we can derive a descent direction from this complex expression.
Specifically, solving

’v œ H, a(g�, v) = J Õ(�)(v)
yields a vector field ≠g� that acts as a descent direction for J(�). This method, based on the distributed
form of the shape derivative, is highly practical and often more e�ective than the surface form, which can
involve challenging numerical computations, such as high-order derivatives or surface curvatures.
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Figure 1.3: Domain � with a small hole nucleated at point x, represented by the ball B(x, Á). This
illustrates a topological perturbation used to compute the topological derivative by examining the e�ect
of the localized change.

1.4 Topological derivatives
This section provides a concise overview of topological derivatives, serving as a foundation for the work in
Chapter 4, where the topological derivative is extended to the surfacic case of optimizing regions bearing
boundary conditions.The study of topological derivatives is essential for addressing complex problems
where traditional shape optimization techniques are insu�cient. Unlike shape derivatives, which are
limited to smooth boundary deformations, topological derivatives enable more drastic changes in the
topology of the domain, such as merging, splitting, or removing parts. This flexibility is particularly
valuable in problems involving multiple phases or materials, where the optimal solution may require
significant structural modifications. Particular examples to where the topological derivative has been
applied include [159], where they optimize an electric machine to maximize its torque so it can deliver
more mechanical power with less electrical input, enhancing its overall energy e�ciency and operational
stability. Another example, this time in structural optimization, optimizes self-loading structures (systems
that experience forces due to their own weight) [253]. This type of loading is crucial in the design and
analysis of buildings, bridges, towers, and other large-scale constructions, where the structure’s weight can
contribute significantly to the overall stresses and deformations. A particular variation of the topological
derivative, where one usually considers the nucleation of an open ball in the domain, is the work [100],
where the author consider the addition of a thin tubular ligament (e.g. a material bar in a truss structure)
between two distant regions of the boundary of the considered domain, usually to reinforce an already
existing structure. Most of these applications usually couple the topological derivatives with the level set
method (see for instance [68, 20, 340, 17]), which will be briefly explained in Section 1.5.

The concept of topological derivative is based on variations of � µ Rd (d = 2, 3) of the form

�x0,Á := � \ B(x0, Á)

where B(x0, Á) is the open ball with center x0 and radius Á. In other terms, �x0,Á is obtained from � by
nucleation of a hole centered at x0 œ � with small radius Á > 0; see Fig. 1.3. The topological derivative
dT J(�)(Á0) of J at � is the first non-trivial term in the asymptotic expansion of J(�x0,Á) as Á æ 0;
typically:

J(�x0,Á) = J(�) + fl(Á)dT J(�)(x0) + o(fl(Á)).
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for some positive function fl : R+
æ R+. For criterion dependent on the solution u�,‘ of a boundary

value problem, we use the asymptotic expansion of the perturbed solution uÁ := u�x0,Á . Since this process
is intricate and technical, we will just present the example in §1.2.2 of [254] which is very simple. We
consider the criterion for shapes � µ R2:

J(�) =
⁄

�
j(u�) dx

where u� is the solution to the boundary value problem (1.5) and j satisfies the conditions (1.4). We
seek to introduce a topological perturbation of the source term of the form fx0,Á = ‰� ≠ (1 ≠ ÷)‰B(x0,Á)
around the fixed point x0 œ �, for ‘ > 0 small enough that the ball B(x0, Á) is compactly contain in �.
Here ‰A represents the indicator function of the set A. In this case, we have:

fx0,Á(x) =
I

f(x) if x œ � \ B(x0, Á),
÷f(x) if x œ B(x0, Á),

with ÷ > 0 a constant that represents the contrast on the source term. Furthermore, a simplifying
assumption that is typically used when conducting these types of analyses is that the source f(x) is
constant in this neighborhood of x0. With these considerations, we can write uÁ as the solution to the
perturbed problem as:

J(�x0,Á) =
⁄

�\B(x0,Á)
j(uÁ) dx,

where u�,Á is solution in H1
0 (�) such that:

’v œ H1
0 (�),

⁄

�\B(x0,Á)
ÒuÁ · Òv dx =

⁄

�\B(x0,Á)
fx0,Áv dx.

With these equations in mind, it is possible to prove that the perturbed criterion has the following
asymptotic expansion in terms of Á,

J(�x0,Á) = J(�) + fiÁ2(1 ≠ ÷)f(x0)p(x0) + o(Á)

where p œ H1
0 (�) is the solution to the adjoint equation to the unperturbed problem

I
≠�p� = ≠jÕ(u�) in �

p� = 0 on ˆ�.

This yields that the topological derivative is the function dT J : � æ R

dT J(x0) = (1 ≠ ÷)f(x0)p(x0).

In general topological and shape derivatives will share very similar structures. Indeed, the following
proposition from [254] expresses this relationship.

Proposition 1.3. If the criterion J(�x0,Á) for Á small enough, it admits the topological asymptotic
expansion of the form:

J(�x0,Á) = J(�) + fl(Á)dT J(�)(x0) + o(fl(Á)), o(fl(Á))
|fl(Á)|

Áæ0
≠≠≠æ 0,

where J(�) is the shape functional associated to the original (unperturbed) domain and the function
dT J(�)(x0) is the topological derivative of the shape functional J . Then, for every fixed vector field
such that ◊|ˆB(x0,Á) = ≠nˆB(x,Á), the topological derivative can be written by:

dT J(�)(x0) = lim
Áæ0

3
1

flÕ(Á)J Õ(�x0,Á)(◊)
4

,

where J Õ(�x0,Á)(◊) is the shape derivative of J at �x0,Á in the direction ◊.

This result will become clear when we present our work in Chapter 4. For more detailed information
on topological derivatives, we refer to [31, 300].
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1.5 Body-fitted shape optimization
The representation of shapes poses a significant challenge, specially when it comes to tracking their
evolution. Classical fields such as computer graphics [155, 209], computer vision [261], robotics [329], and
image processing [343]. This challenge arises from the need to capture a shape’s essential features while
maintaining computational e�ciency and adaptability across di�erent applications. Additionally, the
dimensionality of shapes introduces complexity, as 2D shapes, typically represented as closed curves, di�er
fundamentally from 3D shapes, which involve surfaces and volumes. An example of such a representation
arises in CAD software (see Fig. 1.4).

This section introduces the “body-fitted” approach, which allows for alternating between implicit and
explicit representations of a shape �(t) to track large deformations induced by a velocity field V (t, x),
within a computational domain D µ Rd, including potential topological changes, while maintaining an
accurate meshed representation throughout the process. This approach, based on [12, 13, 14], combines
the two complementary representations of �(t) during its evolution.

On one hand, �(t) is explicitly discretized as a submesh of a high-quality surface triangulation T of
D, enabling precise geometric computations and solving boundary value problems using the finite element
method, thus allowing accurate evaluation of the velocity field V (t, x) (which corresponds to the shape
gradient, in the present application). On the other hand, �(t) is implicitly described using the level set
method, represented as the negative subdomain of a scalar function „(t, ·) : D æ R, which accommodates
arbitrarily large motions of �(t). This strategy will serves as the basis of all the examples generated in
this thesis, and also will serve as the precursor to the strategy described in Chapter 3, where it will be
extended to the case where D is replaced by a surface in Rd.

1.5.1 Shape representation via triangulations
In realistic applications of shape optimization, the challenge involves modeling a physical problem where
the shape, denoted by �, is treated as a variable. This problem is typically described by a system of
partial di�erential equations, with � serving as the domain. To discretize the problem, a mesh T of
� is often employed, following well-established numerical techniques such as the finite element method
[92, 136]. The finite element method operates on T by constructing finite element spaces that are used for
the discretization of the PDEs, allowing for the approximation of solutions in a computationally feasible
way. The mesh T is defined as a collection of open simplices (triangles in 2D, tetrahedra in 3D), denoted
as T = {·k}k=1,...,N , which cover the domain � such that:

� =
N€

k=1
·k.

This means that the union of the closures of all the simplices forms the closure of the domain �.
Additionally, the triangulation must satisfy two important conditions:

1. Non-overlapping simplices. The simplices ·k must not overlap, i.e., ·k fl ·l = ÿ whenever k ”= l.

2. Conformity of the mesh. The mesh T must be conforming, meaning that for any two simplices
·k and ·l, their intersection ·k fl ·l is either a shared vertex, a shared edge, or, in the case of
three-dimensional shapes, a shared face of the triangulation T .

Mesh generation is a complex process, and commonly used methods such as Delaunay triangulation do
not always guarantee success, particularly in producing high-quality meshes, as certain shapes cannot
be subdivided into tetrahedra without introducing additional vertices (see [85]). Mesh quality refers to
the arrangement and shape of elements in representing the domain accurately while ensuring e�cient
numerical computation. While various metrics assess mesh quality, it is well established that mesh
quality significantly impacts the accuracy of the discretized PDE solution (see [92, 136]). Given the
extensive existing literature on mesh generation, we do not explore this topic further; a comprehensive
explanation of mesh generation techniques, particularly in the finite element context, can be found in
[152]. High-quality mesh generation remains an open problem with ongoing research and improvements.
Several mesh generators exist, and some have been used to generate the meshes in this thesis. For more
details, see [162] for GMSH, [182] for FreeFem++’s mesh generator, and [179] for TetGen; see Fig. 1.4 for
an example of such a mesh.
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(a) CAD representation of the domain �.

(b) Mesh discretization of the domain � splitted down the middle to show the 3D elements. The
figure shows that the mesh has been discretized into 1D (edges), 2D (triangles), and 3D (tetrahedral)
elements. The colors corresponds to di�erent features of the mesh which have been identified by the
mesh generator. In this case, the mesh was generated from the CAD design by GMSH.

Figure 1.4: Di�erent representations of a mechanical piece �, where one can solve a partial di�erential
equation using the finite element method once the domain has been discretized into a mesh.
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Figure 1.5: The shape � is implicitly represented by a function „(x), where „ < 0 inside the domain �,
„ = 0 on the boundary ˆ�, and „ > 0 outside.

1.5.2 The level set method for tracking the motion of a domain
The level set method, introduced by Stanley Osher and James Sethian in the late 1980s [258], is a powerful
numerical technique for tracking interfaces and shapes, particularly in problems involving curvature flow
and fluid dynamics. Its versatility and robustness have led to widespread adoption across fields such as
computer vision, image processing, computational geometry, and control theory, where the ability to
track evolving shapes accurately is essential. Among these applications, shape optimization stands out as
a key area where the level set method has had a profound impact. Many works in the shape optimization
literature utilize this framework [67, 325, 17, 326] and in today’s world, it has been widely accepted as a
robust and e�cient way of representing shapes.

The success of the level set method can be attributed to its flexibility; in particular it can represent
complex and evolving shapes without the need for explicit parameterization and permits topological
changes like merging or breaking apart of interfaces. The core concept involves representing a moving
interface as the zero level set of a function „ : [0, T ] ◊ Rd

æ R, where T > 0 is the final time. For a
domain �(t) µ Rd with an evolving boundary ˆ�(t), the interface is implicitly given by:

ˆ�(t) = {x œ Rd
| „(t, x) = 0},

where „(t, x) < 0 inside the domain, „(t, x) = 0 on the boundary, and „(t, x) > 0 outside the domain; see
Fig. 1.5.

Remark 1.3. In general, the confines of utilizing a discretization means that we usually consider a
hold-all computational domain D µ Rd which serves as an approximation of the entire free space. In
this case the level-set function can be defined as:

’x œ D,

Y
_]

_[

„(t, x) < 0 if x œ �(t),
„(t, x) = 0 if x œ ˆ�(t),
„(t, x) > 0 if x œ D \ �(t),

for every time t > 0.

The evolution of the interface, under a velocity field V (t, x), is governed by the level set function
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„(t, x) through a Hamilton-Jacobi-type equation:

ˆ„

ˆt
(t, x) + V (t, x) · Ò„(t, x) = 0. (1.13)

When the velocity is normal to the interface, this simplifies to:

ˆ„

ˆt
(t, x) + v(t, x)|Ò„(t, x)| = 0,

with the scalar field v(t, x) representing the normal speed. In the case of shape optimization, the time
variable t is an artificial parameter. It represents the artificial descent parameter (ie. the iterations) as
the shape optimization process advances, while the velocity field V (t, x) is a descent direction ◊ inferred
from the shape derivative J(�(t))(◊) at the shape �(t).

Aside from providing an e�cient and simple representation of the underlying shape �, the level-set
function „ also provides easy expressions for di�erent geometric objects of related to the domain or its
boundary. Let „ be a level-set function for � (where time dependence has been ignored).

• The normal vector nˆ�(x) to ˆ�, pointing outward � reads:

nˆ�(x) = Ò„(x)
|Ò„(x)| , x œ D.

The above formula actually accounts for an extension of nˆ�(x) from ˆ� to the computational
domain D as a whole.

• The second fundamental form II(x) and the mean curvature Ÿ(x) at the point x œ ˆ� are the d ◊ d
matrix and real value defined by:

’› œ Rd, II(x)› · › = Ò

3
Ò„

|Ò„|

4
(x)› · › and Ÿ(x) = Ò ·

3
Ò„

|Ò„|

4
(x).

Furthermore, if „A and „B are two di�erent level-set functions for shapes A and B, then we have the
following operations.

• The union A fi B of the two shapes is computed as:

„AfiB(x) = min(„A(x), „B(x)).

• The intersection A fl B is given by the maximum of their level set functions:

„AflB(x) = max(„A(x), „B(x)).

• To compute the di�erence A \ B, the level set function is defined as:

„A\B(x) = min(„A(x), ≠„B(x)).

1.5.3 Numerical discretization of the advection equations
The practical solution of (1.13) for shape optimization involves discretizing the time interval [0, T ] into
subintervals (tn, tn+1) where n œ N. In this setting, the sequence of shapes �n = �(tn) is used to derive
the descent direction V n(x) := V (tn, x) = ◊n(x), obtained from the shape derivative J(�n)(◊). The
velocity field is assumed constant over each time step (tn, tn+1), i.e.,

’t œ (tn, tn+1), V (t, x) ¥ V (tn, x). (1.14)

This time discretization results in a sequence of linear advection equations:

ˆ„n

ˆt
(t, x) + V n(x) · Ò„n(t, x) = 0, for t œ (tn, tn+1) ◊ D, (1.15)

with the initial condition „n(0, x) representing the level-set function corresponding to the shape at time
�(tn).
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The resolution of (1.15) is well-established in the literature when the mesh T is a Cartesian grid.
Many finite di�erence schemes have been developed [236, 223] and are implemented in numerical libraries.
However, for unstructured simplicial meshes, these techniques are not applicable, requiring more advanced
methods such as discontinuous Galerkin schemes [120].

A more general approach to solving the advection equation (1.15), independent of mesh structure, is
the method of characteristics. Under appropriate regularity assumptions on the velocity field V n(x), the
exact solution „n(t, x) is:

„n(t, x) = „n

0 (X(0, t, x)), t œ (tn, tn+1), x œ D, (1.16)

where s ‘æ X(s, t, x) is the characteristic curve of V n, which solves the ordinary di�erential equation:

Ẋ(s, t, x) = V n(X(s, t, x)) for s œ (tn, tn+1), X(t, t, x) = x. (1.17)

In simple terms, s ‘æ X(s, t, x) describes the trajectory of a particle driven by the velocity field V n,
starting at x at time t. Using (1.16), the value of „n(tn+1, x) at a given vertex x of the computational
mesh T can be computed by solving the backward-in-time equation (1.17). Implementations of this
technique already exist as open-source libraries in [106], which utilizes a 4th-order Runge-Kutta scheme,
with the associated theoretical background developed in [66].

1.5.4 The signed distance function
No assumptions have been made so far regarding the specific nature of the level set function „ used
to track the domain �(t). Historically, the application of distance functions to geometric problems
can be traced back to classical di�erential geometry. However, their significant utility in optimization
and computational methods only became apparent with the development of the level set method; the
signed distance function naturally emerged as an ideal candidate for a level set function, owing to its
advantageous mathematical properties, simplicity, and flexibility in describing evolving boundaries. The
signed distance function is based on the distance d(x, �) := minyœˆ� |x ≠ y|, which measures the shortest
distance from a point x to the boundary ˆ� of the domain �. Formally, the signed distance function is
defined as:

’x œ D, d�(x) =

Y
_]

_[

≠d(x, �) if x œ �,

0 if x œ ˆ�,

d(x, �) if x œ D \ �,

(1.18)

where D represents the computational domain, and in a more general setting, D = Rd.
One of the most compelling reasons why d� is particularly well-suited for use as a level set function

lies in its “signed distance property”. The signed distance function d� has a smooth gradient Òd� near
the boundary, with the magnitude of the gradient being exactly 1. On ˆ�, the gradient is precisely the
normal vector field (see [165]). More formally:

Proposition 1.4. Let � be of class Ck, where k Ø 2. Then d� is of class Ck for points x œ D that
are su�ciently close to ˆ�, and

|Òd�(x)| = 1. (1.19)

Additionally, if x œ ˆ�, then Òd�(x) = nˆ�(x).

This regularity near the zero level set simplifies the computation of key geometric quantities such as
normals and curvatures, which are essential for shape optimization. Indeed, if one is able to compute
the signed distance function for � in D, then one only need to compute its gradient to have a natural
extension of the normal vector field nˆ� to all of D. Additionally, geometric quantities, such as those in
Section 1.5.2, can be expressed in simpler terms:

II(x) = Ò
2d�(x) and Ÿ(x) = �d�(x),

where Ò
2 represents the Hessian matrix, and � the Laplacian operator.

In light of this, the numerical computation of the signed distance function is crucial to our study. Its
computation is based on the well-known “fast marching method” on Cartesian grids, introduced by James
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Sethian in [291] and further developed in [292]. The central idea behind this e�cient numerical method
is to solve the Eikonal equation: I

|Òu(x)| = 1, for x œ �,

u(x) = 0, for x œ ˆ�,

by leveraging the fact that information propagates outward in a monotonic manner. Specifically, once
a wavefront passes through a point, the value of the solution at that point becomes fixed and does not
change, allowing for e�cient computation. In this manner, the algorithm has a complexity of O(n log n)
where n is the number of grid points. Extensions to the case of an unstructured simplicial mesh have
already been proposed in the works [205, 268], and open source implementations are freely available
[106, 105], which we employ throughout this work.

1.5.5 Discretization of the negative sub-domain of the level-set function
The next step in the body-fitted approach is transitioning from a level-set representation to a meshed
representation of the shape �. An exact meshed representation enables the use of finite element
discretization techniques, facilitating the modeling of the underlying physics.

Let T be a triangulation of a computational domain D µ Rd, and let „ : D æ R be a level set function
for a region � µ D, given by its values at the vertices of T . Our goal is to construct a new, high-quality
computational mesh ÂT of D, consisting of two submeshes, ÁTint and ÁText, for the regions � and D \ �,
respectively. This can be achieved through various strategies (see [153, 154]); here, we adopt the approach
from [102]. This method involves two main steps:

1. Triangles · œ T that intersect the zero level set � = ˆ� of „ are identified based on the function values
at the vertices, and � is explicitly incorporated into T . This is done using the marching tetrahedra
algorithm [127], a variant of the marching cubes method [226], which splits each intersecting triangle
into a valid, conforming configuration with explicit representation of the segment �fl· . The resulting
triangulation Ttemp of D contains submeshes Ttemp,int and Ttemp,ext for � and D \ �. However,
Ttemp contains poorly shaped, nearly flat elements, which are unsuitable for accurate geometric and
finite element computations (see [92]).

2. The intermediate mesh Ttemp is iteratively refined to improve element quality, aiming to make
them as equilateral as possible. This process results in a high-quality mesh ÂT of D, with explicit
discretizations of both � and D \ �.

The second step is the most complex, involving geometric calculations such as determining the normal
vector nˆ� to ˆ�, and its variation at neighboring vertices of T . These computations help determine the
optimal element sizes for accurately approximating D and �.

These steps are detailed in Section 3.2.4, where we extend the method to the case of surfaces, employing
the same techniques. For now, we omit the exact operational details and note that most of these methods
have already been implemented in the general-purpose open-source library MMG, which is dedicated to
simplicial remeshing. For a more comprehensive presentation, refer to [102], and for recent developments
on the subject, see [38].

1.6 The classical cantilever example
In this section, we illustrate the previous techniques with one of the most classical examples in the
literature – the so called cantilever example [15, 22, 52, 104]. The objective is to minimize the compliance
of a beam, which represents the total strain energy of a mechanical structure � under applied load –
so that minimzing compliance amounts to maximizing the structural sti�ness. The beam, fixed at one
end and subject to external forces at specified points, undergoes shape or topology changes satisfying
constraints such as a fixed material volume.

1.6.1 The optimization problem
Let � denote the shape, whose boundary ˆ� is decomposed into three disjoint pieces:

ˆ� = �D fi �N fi �,

where:
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Figure 1.6: The image shows a typical schematic from shape optimization of a cantilever beam. The
beam is fixed on the left side �D and subjected to a vertical force on the right side �N . The optimized
structure � minimizes compliance by e�ciently distributing material, leaving voids to reduce weight while
maintaining structural sti�ness. The boundary � is the “traction-free” part of ˆ�, and the design region
D is highlighted in yellow, representing the area where the shape optimization occurs.

• The displacement of the shape � is prevented on the region �D;

• The region �N is subjected to surface loads g œ L2(�N )d;

• The remaining part � is traction-free.

We seek to minimize the compliance of the shape � µ Rd, while utilizing the least amount of material
possible:

min
�µRd

⁄

�
Ae(u�) : e(u�) dx + ¸ Vol(�), (1.20)

where u� is the unique H1
�D

(�) solution to the boundary value problem:
Y
___]

___[

≠Ò · (Ae(u�)) = 0 in �,

Ae(u�)nˆ� = g on �N ,

Ae(u�)nˆ� = 0 on �,

u� = 0 on �D.

(1.21)

Here, e(u) := 1
2 (Òu + ÒuT ) is the strain tensor associated with a displacement field, and A is the Hooke’s

tensor, defined by:
Ae = 2µe + ⁄tr(e)I,

where I is the identity d ◊ d matrix, and ⁄, µ are the Lamé parameters of the constituent material,
satisfying µ > 0 and ⁄ + 2µ

d
> 0. These parameters are often expressed in terms of more physically

relevant quantities:
µ = E

2(1 + ‹) , ⁄ = E‹

(1 + ‹)(1 + ‹(1 ≠ d)) ,

where E is the Young’s modulus, representing the material’s resistance to traction, and ‹ is the Poisson’s
ratio, measuring the transverse deflection of the material when subjected to traction loads. For a more
comprehensive introduction to linearized elasticity, see [93].

In this context, the shape derivative of the functional in (1.20), is given by [15]:

J Õ(�)(◊) = ≠

⁄

ˆ�

!
Ae(u�) : e(u�) ≠ ¸

"
◊ · nˆ� ds. (1.22)

Utilizing this information, we propose the following algorithm to find the optimal shape for (1.20).
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Algorithm 1: Body-fitted optimization of the compliance for a shape �.
Input: Mesh T

0 of �, whose interior contains an explicit discretization of the initial region �0.
for n = 0, . . . , N ≠ 1 do

1. Compute the signed distance function d�n to �n at the vertices of the mesh T .

2. Solve the equation (1.21) utilizing the interior domain T
n

int.

3. Infer a descent direction from ◊n using the shape derivative expression J Õ(�n)(◊) in (1.22).

4. Solve the advection equation:
;

ˆ„

ˆt
(t, x) + ◊n(x) · Òˆ�„(t, x) = 0 for (t, x) œ (0, �t) ◊ ˆ�,

„(0, x) = d�n(x) for x œ ˆ�,

on the total mesh T
n of ˆ�. A new level set function „n+1 = „(�t, ·) is obtained for

�n+1 =
)

x œ ˆ�, „n+1(x) < 0
*

.

5. From the datum of „n+1 at the vertices of T
n, create a new, high-quality mesh T

n+1 of �n+1

made of two submeshes T
n+1

int and T
n+1

ext for �n+1 and D \ �n+1, respectively.

end
Output: Mesh T

N containing an explicit discretization T
N

int of �N .

1.6.2 A numerical experiment
For our experiment, we choose µ = 0.3846. ⁄ = 0.5769, ¸ = 0.4, with the initial design pictured in Fig. 1.7.
In the picture one can see how the shape evolves from the initial topology up to the classical cantilever
shape often seen in the literature. Here, the mesh lines are visible to illustrate that at any moment of the
process, we can track the exact mesh representation of the domain � (in brown) and how the level-set
method permits various topological changes due to the merging of boundaries. The objective is clearly
seen to be minimized as the iterations pass.

Figure 1.7: Initial design for the cantilever.
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(a) i = 10

(b) i = 20

(c) i = 30

(d) i = 40

Figure 1.8: Snapshots of the shape optimization process described in Algorithm 1.
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(e) i = 80

(f) i = 180

(g) Convergence history for the objective functional of problem (1.20).

Figure 1.8: Snapshots of the shape optimization process described in Algorithm 1.
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1.7 Limitations, variants and the homogenization phenomenon
Two significant challenges frequently arise when solving problems like (1.20): local minima and the
non-existence of classical solutions. The cost function is typically non-linear and non-convex, which leads
to multiple valleys and peaks. As a result, local minima often emerge, where a shape has a lower cost
than nearby configurations but is not globally optimal. Gradient-based optimization algorithms, which
adjust the shape iteratively based on local information (such as shape derivatives), are especially prone
to converging to these local minima [15]. Consequently, the final shape may be suboptimal and highly
sensitive to the initial guess. For example, as shown in Fig. 1.9, using a mesh deformation technique
(displacing mesh vertices in the direction of the descent vector ◊) can lead to di�erent local minima. One
mesh, starting with holes, converges to a minimizer with the same topology, while another starts without
holes and similarly converges to a local minimizer with the same initial topology. These issues motivate
the development of methods that can optimize shapes while allowing for topological changes.

(a) Evolution process of an initial mesh topology
with holes.

(b) Evolution process of an initial mesh topology
without holes.

Figure 1.9: Two di�erent local minimizers, with di�erent topologies. Illustrations taken from §6.5.3 in
[22].

An even more fundamental issue is the generic non-existence of classical solutions, where optimal
shapes may not exist. Though at first, this might seem like a problem limited to the theoretical realm,
it has serious practical implications. Algorithms often fail to converge under mesh refinement and are
highly sensitive to initial conditions, a direct consequence of this non-existence. This lack of convergence
means that the computed solution cannot be guaranteed to be optimal, even approximately. To address
these challenges, one approach is to impose additional constraints that restrict the class of admissible
designs [19], ensuring the existence of an optimal solution and improving the reliability of the optimization
process. For instance, let us mention the addition of a perimeter constraint to guarantee the compactness
of minimizing sequences and so, existence of optimal shapes [26].

This non-existence of solutions is largely attributed to the homogenization phenomenon, which
manifests both theoretically and at the numerical level. From a numerical perspective, optimization
algorithms tend to exploit combinations of di�erent material phases or voids to improve the design’s
performance at fine scales. For example, consider minimizing a functional like the mean temperature
J(�) = 1

Area(�)
s

� u� dx + Vol(�), where u� is the solution to (1.5), and material usage is also penalized.
A density-based algorithm like SIMP [50] may produce designs featuring microstructures, as illustrated in
Fig. 1.10. In these designs, the conductive material (represented by the black region) is distributed in
branching structures to minimize material usage. However, such designs are often impractical, as they
are di�cult or even impossible to manufacture.

This lack of solution existence is primarily due to the homogenization phenomenon, which appears
both theoretically and numerically. From a numerical perspective, optimization algorithms often exploit
mixtures of di�erent material phases or voids to enhance performance at fine scales.

For a detailed introduction to homogenization theory and its implications in shape optimization, refer
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to [9, 8]. Specifically, §3.1 of [15] discusses the non-existence of optimal designs due to the homogenization
phenomenon.

Figure 1.10: The image shows a branching structure (black regions) representing the conductive material,
embedded in a lighter background (voids), characteristic of a homogenization phenomenon in shape
optimization. The design features fine-scale microstructures that spread out like tree branches, aiming
to minimize material usage while maintaining performance. This illustrates the emergence of complex
geometries that are challenging to realize in practical applications, yet represent an optimal solution in
the homogenized sense.

Despite these drawbacks, practical studies, such as [134], demonstrate that working within convex
design spaces can yield local optima, although heavily dependent on the choice of parameters. Furthermore,
theoretical studies like [71, 70] have established the existence of solutions under general objective
functionals, by imposing additional constraints (e.g., shape regularity) on the design space.

1.8 State of the art for shape and topology optimization of
surfaces

Despite significant advances in shape and topology optimization, most research has focused on volumetric
domains, with limited attention given to the optimization of a region on a surface. Existing methods,
as reviewed in this chapter, are predominantly designed for optimizing domains � µ Rd. However,
surface-based problems present additional complexities due to the intricate geometry of surfaces, requiring
specialized computational techniques.

To compound the issue, and as highlighted in the introduction, surface optimization has applications
across various multiple fields. In heat transfer, optimizing heat exchanger surfaces improves thermal
e�ciency, reduces material usage, and enhances overall heat management [203, 33]. In aerodynamics
and hydrodynamics, optimizing surfaces such as airplane wings, boat hulls, and wind turbine blades
reduces drag and enhances lift or propulsion e�ciency [232, 160, 334]. In acoustics, surface shape is
critical for controlling sound, from reducing vehicle noise to enhancing concert hall acoustics [224, 272].
Additionally, optimizing thin-walled structures such as shells and membranes used in ship hulls, roofs,
and aircraft fuselages has advanced through both simplicial mesh and grid-based methods [91, 318, 338].
The diversity of these applications underscores the urgent need for a comprehensive framework to address
these challenges.

This thesis bridges the gap in surface-based shape and topology optimization through four key
contributions:

1. Theoretical developments and generalizations to manifolds, extending classical optimization tech-
niques to Riemannian manifold settings.
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2. Numerical evolution of domains on hypersurfaces embedded in Rd, with computational strategies
tailored to the challenges of surface optimization.

3. Optimization of boundary conditions for various PDEs, introducing new methods for optimizing
regions that support boundary conditions across di�erent physical contexts.

4. The development of open-source programming tools that facilitate the implementation of the
methods introduced in this thesis.

In the final sections of this chapter we aim to detail already existing work in the literature and detail
our contributions in these key areas.

1.8.1 Theoretical developments and generalizations to manifolds

The main contribution related to this topic is contained in Chapter 2.

We introduce a novel framework for the geometric optimization of regions on submanifolds within a
general ambient Riemannian manifold M . While the classical boundary variation method, originally
introduced by Hadamard [177], has been extensively explored in Euclidean spaces [22, 116, 185, 301], our
contribution extends this approach to the Riemannian setting, a context that has not been thoroughly
addressed in previous work. By employing the exponential map in a Riemannian manifold, we provide
an equivalent representation to the “perturbation of identity” method, traditionally used in Euclidean
spaces, and adapt it for submanifolds in a more general geometric setting.

While some prior works, such as [311] and [285], have explored related ideas—like applying Hadamard’s
theorem to submanifolds and computing second-order directional shape derivatives—these studies are
restricted to submanifolds of the ambient space Rn. In contrast, our framework is situated in the more
general setting of a complete Riemannian manifold, where the use of the exponential map allows us to
handle the intrinsic curvature of the manifold, providing a more versatile and rigorous foundation for
shape optimization.

Our approach builds upon previous advancements, such as the work of [188], which uses di�erential
forms for shape derivatives, and o�ers a coordinate-independent and invariant-preserving model. While
adopting a Riemannian viewpoint increases mathematical rigor, we argue that it results in more elegant
proofs and a deeper understanding of the geometric aspects of shape optimization. Furthermore, this
framework di�ers from other Riemannian perspectives, such as that in [287], which treats the set of all
shapes as an abstract infinite-dimensional manifold. Instead, our focus remains on submanifolds of an
ambient manifold, utilizing the boundary variation method to deform them.

In summary, the main contribution is the development of a comprehensive framework that generalizes
classical shape optimization techniques to the Riemannian setting, providing new insights and tools
for optimizing regions on curved submanifolds, a topic that has been relatively unexplored in previous
literature.

1.8.2 Numerical evolution of domains on hypersurfaces embedded in Rd

The main contribution related to this topic is contained Chapter 3.

The problem of representing and tracking the evolution of a domain G(t) µ Rd (where d = 2 or 3) has
been a central focus in various applied disciplines, such as computer graphics, fluid dynamics, fracture
propagation, and shape optimization. Multiple numerical methods have been developed to tackle this
challenge, but a common issue remains: balancing the accurate representation of G(t) with the robust
handling of its evolution, especially when the velocity field V (t, x) depends on complex geometric features
like curvature or the solution to boundary value problems.

Lagrangian methods, which track the motion of the mesh directly, often su�er from mesh degradation
as the motion progresses, leading to invalid geometries and computational challenges. While there have
been improvements, such as remeshing techniques or the modification of internal mesh velocities [37, 75],
these methods are typically limited to small deformations. Some newer approaches, like the Deformable
Simplicial Complex [89] and the X-mesh method [240], have pushed the boundaries of Lagrangian methods
by addressing large deformations and topology changes. However, these techniques still struggle with
accurately solving boundary value problems on degenerate meshes.
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On the other hand, Eulerian methods, particularly the level set method [258], o�er a more flexible
framework for representing large deformations of G(t) without the need for explicit meshing. Despite
their ability to handle complex motions, these methods are less suited for solving PDEs on the evolving
domain due to the implicit nature of the representation.

While the evolution of domains in Euclidean space has been extensively studied, relatively little work
has been done when the ambient medium is a manifold, such as a surface S µ R3. This is surprising
given the number of important applications, including geometric flows, surface-based texture generation
in computer graphics, and physical processes occurring on surfaces (e.g., phase changes in materials).
Although early e�orts like [87] and [204] applied level set methods to track geodesic curvature flow on
surfaces, these approaches were limited to specific surface parametrizations or graphs. More general
frameworks were introduced later, such as those using a fixed level set function to describe the surface S
and the domain G(t) evolving within it [54, 84], or the closest point method for solving PDEs on surfaces
[230].

Our main contribution, is a new numerical methodology that advances the state of the art by enabling
the tracking of arbitrarily large motions of G(t) on an ambient surface S µ R3, while preserving both the
topology and a high-quality mesh representation throughout the process. Building on the previous work
on evolving domains in Euclidean space [12, 13, 14], we extend these techniques to the case where the
ambient medium is a surface. Our approach combines two complementary representations:

1. An explicit discretization of G(t) as a submesh of a high-quality triangulation of S, allowing for
precise geometric calculations and the solution of boundary value problems.

2. An implicit level set representation of G(t), enabling arbitrarily large deformations and topological
changes.

The core innovation of our work lies in the e�cient meshing algorithms and numerical schemes that allow
for seamless transitions between these two representations, overcoming limitations of both Lagrangian
and Eulerian methods in previous studies.

1.8.3 Optimization of the regions supporting boundary conditions for di�erent
PDEs

The main contribution related to this topic is contained in Chapter 4.

The optimization of regions supporting boundary conditions for various partial di�erential equations
is a growing field with numerous applications, yet it remains underexplored. In elasticity, for example,
optimizing regions where Dirichlet and Neumann boundary conditions are imposed (e.g., clamp-locator
systems) can improve the design of fixations or load application points. Previous studies have utilized
density-based topology optimization, genetic algorithms, neural networks, and level-set methods [228,
201, 289, 332, 333, 345]. In acoustics, research has focused on optimizing the distribution of absorbing
materials (Robin boundary conditions) to minimize sound pressure, as demonstrated in [119].

Recent works, such as [318], commonly use density-based optimization on fixed meshes, while body-
fitted mesh evolution methods, derived from works like [14], have been applied to track large deformations,
as seen in [234], which optimized Neumann eigenvalues on a 3D sphere. However, these methods are
often case-specific and lack a unified framework for handling shape and topology optimization of regions
supporting boundary conditions. This gap leaves theoretical frameworks and strategies for addressing
large deformations or topology changes relatively undeveloped, despite the widespread importance of
these problems.

Building on the theoretical contributions of [108] and [56], our work proposes a comprehensive
framework for shape and topology optimization of regions G µ ˆ� supporting boundary conditions
for PDEs on a fixed domain �. The work [108] o�ers a rare study on shape optimization, focusing
on the sensitivity of a functional J(G) to small di�eomorphic perturbations of G, while [56] extends
this understanding to singular perturbations where boundary conditions switch between Dirichlet and
Neumann.

Our contribution combines and extends these approaches to develop a robust workflow. We integrate
shape and topological derivatives to assess the sensitivity of J(G) to both small deformations of ˆG and
singular perturbations by introducing small surface regions. While formal calculations are presented in
the context of the conductivity equation, our methods are adaptable to more complex applications, such
as acoustics and structural mechanics.
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A key innovation of our approach is the dual application of asymptotic analysis: first, to smooth
singular transitions between regions with di�erent boundary conditions, simplifying the calculation of
shape derivatives; and second, to explore singular perturbations by introducing small zones with modified
boundary conditions to quantify topological sensitivity. This strategy allows us to propose a novel, flexible,
and generalizable framework that has not been previously available in the literature.

From a theoretical perspective, we propose formal methods for calculating both shape and topological
derivatives. These methods, detailed in the simpler context of the conductivity equation, can be extended
to more complex scenarios like acoustics and structural mechanics. While shape derivatives are relatively
straightforward for a range of problems, topological derivatives require more intricate adaptations, which
we address in detail. Our work ultimately demonstrates how asymptotic analysis can simplify boundary
condition repartition and enable the study of singular perturbations, expanding the applicability of shape
and topology optimization techniques.

1.8.4 Open-source programming tools for developing shape and topology
optimization algorithms

The main contribution related to this topic is contained in Chapter 5.

The release of the 99-line topology optimization MATLAB code, known as top99 [297], by Ole Sigmund in
2001 marked a pivotal moment in the field of structural and multidisciplinary optimization. This concise
and accessible code quickly became a widely used educational tool, inspiring numerous contributions
that distilled complex optimization algorithms into simplified formats. The impact of top99 extended
beyond its immediate utility, fostering a culture of learning, experimentation, and innovation within the
optimization community. In recent years, the number of educational tools and papers in this area has
steadily grown [324], with many relying on simplified scripts or tools designed for specific tasks.

While such tools are valuable for demonstrating basic concepts and performing simple optimizations,
they often fall short when addressing the complexities of real-world problems. Many shape optimization
tasks involve nonlinear problems [310], integration with simulation software [4], mesh generation, and
diverse mathematical solvers [202]—challenges that simplified tools cannot fully manage. Recent works,
such as [104], have introduced useful libraries and repositories, but these often come with multiple
dependencies and require significant technical expertise. Similar trends are seen in other scientific tools
like [227, 107, 18], which, while technically rich, are better suited for academic prototyping rather than
robust, scalable applications required in more complex scenarios. To truly meet the needs of engineers
and researchers, shape optimization software must prioritize scalability, integration, and performance.
Without a robust and well-engineered library, users are forced to develop ad-hoc solutions, leading to
ine�cient workflows, increased development time, and inconsistent results.

In response to these limitations, we introduce Rodin, a C++ library designed to provide a com-
prehensive solution for shape and topology optimization. Unlike existing tools, Rodin is a lightweight,
modular finite element framework that integrates shape and topology optimization algorithms into a
single application programming interface (API). Rodin is engineered for scalability, allowing users to
seamlessly move from prototyping to larger, more complex problems without the need for extensive
technical expertise or multiple dependencies.

Rodin o�ers a full suite of essential functionalities for advanced shape and topology optimization, all
integrated under the hood. These include:

• Shape refinement and remeshing via MMG [103].

• Domain distancing using MSHDIST [105].

• Advection of level set functions via integation with the ISCD computational toolbox [66, 106].

These tools have been tried and tested for years in the context of shape optimization and are
directly integrated into Rodin thanks to the fact that they are coded in C. As a C++ library, Rodin
can interoperate with C natively, ensuring seamless integration and optimal performance. Rodin also
introduces a FreeFem++-like approach for defining variational problems, combining quick prototyping and
user-friendliness without sacrificing interoperability. It employs the finite element method, to assemble
the associated stifness operators and mass vectors that are often emplyoed to simulate physical problems.
This approach enhances the ease of use while maintaining the flexibility to handle complex problems.
The library provides access to a range of linear solvers, including Krylov solvers like GMRES [279] and
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direct solvers like UMFPACK [112], all fully integrated within the C++ ecosystem. This eliminates the
need for external software, with third-party libraries directly incorporated into the library’s build system.

To the best of our knowledge, Rodin is a novel contribution in the field, with no other C++ libraries
o�ering this level of integration, flexibility, and scalability for shape and topology optimization.
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Chapter 2

Towards a framework for the optimiza-
tion of domains on manifolds

In this chapter, our objective is to establish a framework for the geometric optimization of regions on
submanifolds within a general ambient manifold M . We adopt the setting of Riemannian di�erential
geometry, allowing us to leverage various classical results from this field. Under this framework, we
provide proofs for a few well-known results in the classical shape optimization literature. Additionally, we
delve into several methodologies for optimizing di�erent geometries in diverse contexts. Throughout this
chapter, we primarily employ the boundary variation method initially introduced by Hadamard in his
seminal article [177]. This method has since been explored in various works such as [22, 116, 185, 184, 301].
In a Riemannian setting, we utilize the exponential mapping, which provides an equivalent representation
of the “perturbation of identity” approach [184, 301]. This approach is one of the most widely used
methods in the literature. Furthermore, this choice of representation can be seen as an analog to the
“velocity method” [116, 354, 355], where a vector field ◊ on Rn induces a flow representing the trajectory
of a particle evolving on the boundary. We will not delve into the details of these classical methods here,
as they are extensively discussed in the cited works. It is worth noting that similar ideas to the ones
presented in this chapter have been explored in [311], where the Hadamard structure theorem is proven
on submanifolds, and crack surfaces are examined under this model. More recently, [285] has utilized
equivalent ideas to those presented in this chapter for the computation of second-order directional shape
derivatives of integrals on submanifolds. However, these works di�er slightly from our framework in that
they specifically consider submanifolds of the ambient space Rn. In contrast, we consider the ambient
space to be a complete Riemannian manifold M , which naturally leads to the use of the exponential
mapping as an equivalent form of perturbation to the identity or velocity method. This choice allows
us to leverage the well-developed and extensively studied theory of Riemannian di�erential geometry.
Our selection of this theory is not unprecedented. For example, the study [188], which focuses on shape
derivatives via di�erential forms, presents several elegant approaches and advantages. These include the
coordinate-independent description of models and the clear separation of invariants under homeomorphic
transformations. In our study, we have found that adopting a Riemannian viewpoint generally leads
to more elegant proofs and o�ers a more intrinsic understanding of the geometric aspects of shape
optimization. However, it comes at the cost of increased mathematical rigor due to the language of
Riemannian di�erential geometry. Lastly, we note that a Riemannian perspective, approached di�erently,
has already been explored in [287], where the set of shapes is viewed as a Riemannian manifold and
W 1,Œ(Rn, Rn) is regarded as the tangent space. In general, the aim of this approach is to regard the
set of all shapes as an abstract infinite-dimensional Riemannian manifold. This is distinct from our
framework, which views shapes as submanifolds of an ambient manifold and seeks to deform them using
the boundary variation method.
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MANIFOLDS

Foreword on the theoretical content
Most of the results presented in this chapter are not directly utilized in the subsequent chapters, and
therefore, it is not necessary to perform an in-depth reading to understand the rest of the work. However,
we believe that the insights provided here o�er a valuable alternative perspective on shape optimization,
enriching the overall understanding of the subject and highlighting di�erent approaches that may be of
interest to those seeking a deeper exploration of the topic.

2.1 Shape di�erentiability on manifolds
In this section, we will designate the Riemannian manifold (M, g) as the ambient manifold. Our aim
is to establish a notion of boundary variation for a regular domain G embedded in M . However, it is
important to note that when extending the concept of boundary perturbation to a general manifold,
the mapping x ‘æ (Id + ◊)(x) no longer represents a deformation in the ambient manifold. To address
this issue, we must introduce the notion of geodesics, which induce a concept of “trajectory” on the
manifold. This notion will be further defined in the subsequent discussion. Consequently, it becomes
pertinent to consider the exponential mapping as a form of perturbation by a fixed vector field ◊ œ X(M).
Furthermore, we examine a regular domain G µ M with a closed codimension-1 submanifold ˆG as its
boundary. Both G and ˆG possess induced metrics derived from the ambient metric.

2.1.1 The deformation of space
For a shape G embedded in a Riemannian manifold, a vector field assigns tangent vectors to points on the
shape’s surface. The exponential map translates these tangent vectors into new points on the manifold,
e�ectively moving the shape in the direction of the vector field. This results in a smooth deformation that
respects the manifold’s geometry. By adjusting the vector field and using the exponential map, various
deformations can be explored to optimize the shape according to specific criteria, making it a crucial tool
in shape optimization.

Definition 2.1 (Deformation of space). Let (M, g) be a Riemannian manifold and a vector field
◊ œ X(M). The smooth map F M

◊
: M æ M defined by:

F M

◊
(p) := exp

p
(◊(p)) (2.1)

is referred to as the deformation of space on M by ◊. We denote the deformed domain by
G◊ := F M

◊
(G).

The following lemma states that on a compact Riemannian manifold, there exists a neighborhood
around the zero section in the space of vector fields such that any vector field within this neighborhood
induces a smooth, invertible map. This is crucial for shape optimization and deformation analysis as
it ensures that small perturbations via vector fields result in well-behaved, reversible deformations. It
provides stability for the exponential map, enabling smooth and reversible shape changes, which are
essential for iterative optimization and geometric analysis.

Lemma 2.1. Let (M, g) be a Riemannian compact manifold. Then, there exists a neighborhood
O µ X(M) of the zero section 0M such that for any ◊ œ O, the smooth map F M

◊
is a di�eomorphism.

Proof. Note that since the manifold is compact, then its injectivity radius r = inj(M) is strictly positive.
Let O µ X(M) be defined by:

O := {◊ œ X(M) | ’k œ N, ||◊||k < r} ,

which is clearly open in the induced CŒ topology. Recall that for any p œ M , exp
p

is a di�eomorphism
from the ball B(0, r) in TpM onto its image U µ M , which is a normal neighborhood (see Definition D.17).
Furthermore, for any v œ TpM , the geodesic “(t) with “(0) = p, “Õ(0) = v lies entirely within U . Consider
then any two distinct points p1, p2 œ M and notice that we can always choose normal neighborhoods
U1, U2 µ M , around these points such that they are the image of the balls B(0, ‘i) with su�ciently small
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Figure 2.1: Illustration of the deformation of a regular domain G in a possibly curved manifold M . The
deformation is governed by the map F M

◊
, which smoothly transforms points in G to a deformed domain,

tracking the path “◊(p)(t) for each point p.

radii ‘1, ‘2 < r, and B(0, ‘1) fl B(0, ‘2) = ÿ. To see why F M

◊
is injective, assume that q := F M

◊
(p1) =

F M

◊
(p2). Then there exist geodesics “i : [0, 1] æ Ui such that:

“i(0) = pi, “Õ

i
(0) = ◊(pi), q = “i(1),

for i = 1, 2, and so U1 and U2 forcibly overlap, which can only be the case if p1 = p2.
⌅

Remark 2.1. For ◊ œ O, note that since F M

◊
is a di�eomorphism, the deformed boundary of G is

equal to the boundary of the deformed domain G◊. In symbols:

ˆ(G◊) = F M

◊
(ˆG) . (2.2)

This allows us to fix the notation ˆG◊ := ˆ(G◊) = F M

◊
(ˆG) which from now on we will utilize.

A key result of significant importance is the di�erential of the deformation in space. This di�erential
can be implicitly described as the solution to the Jacobi equation Theorem D.6 with suitable initial
conditions. The Jacobi equation characterizes the infinitesimal behavior of F M

◊
when varying the point

p œ M in the direction v œ TpM . Moreover, it establishes a connection between this perturbation and
the manifold’s curvature, specifically through the curvature endomorphism.

Lemma 2.2 (Di�erential of the deformation). Let “◊(p) : I æ M be the geodesic such that
“◊(p)(0) = p, “Õ

◊(p)(0) = ◊(p). For all v œ TpM , the di�erential dpF M

◊
: TpM æ TF◊(p)M of F M

◊
at a

point p œ M is given by:
dpF M

◊
(v) = Jv(1) , (2.3)

where Jv(t) satisfies the Jacobi equation:

D2
t
Jv + R

1
Jv, “Õ

◊(p)

2
“Õ

◊(p) = 0 , (2.4)

with initial conditions:
Jv(0) = v and DtJv(0) = Òv◊(p) , (2.5)

where R is the curvature endomorphism, and Òv◊ is the covariant derivative of ◊ in the direction
v œ TpM .
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Proof. Let “◊(p)(t) = exp
p
(t◊(p)) and choose a curve ‡(s) : (≠‘, ‘) æ M satisfying ‡(0) = p, ‡Õ(0) = v

for v œ TpM . Consider the one-parameter family of curves:

� : (≠‘, ‘) ◊ [0, 1] æ M (2.6)
(s, t) ‘æ exp

‡(s)(t◊(‡(s))) . (2.7)

Note F M

t◊
(p) © �(0, t), we may compute the di�erential of F M

◊
by computing ˆ

ˆs
�(0, 1). Define the time

varying vector field J(t) := ˆ

ˆs
�(0, t); we now show that J is a Jacobi field. Note that in particular we

have that �(0, t) = “◊(p)(t) showing that � is a variation of “◊(p). Moreover it is a variation through
geodesics by Definition 2.1, thus J is indeed a Jacobi field by (D.29). Furthermore, we have that:

J(0) = ˆ

ˆs
�(0, 0) = ‡Õ(0) = v , (2.8)

and utilizing the symmetry lemma (Lemma D.2), we have:

DtJ(0) = Dt

ˆ

ˆs
�(0, 0) = Ds

ˆ

ˆt
�(0, 0) = Ds◊(p) = Òv◊(p) , (2.9)

where Dt and Ds denote covariant di�erentiation through “◊(p)(t) and ‡(s) respectively.
⌅

Remark 2.2 (Re-scaling of the geodesic path). From the proof it is clear that, in particular,
the di�erential of the deformation Ft◊(p) is equal to Jv(t) along the geodesic “◊(p).

Let us discuss the significance of Lemma 2.2. From a practical standpoint, this lemma enables
computations involving the di�erential of F M

◊
. Additionally, it o�ers a means to establish connections and

reasoning about the varying geometries of G and F M

◊
(G). Its utilization becomes particularly relevant

when quantifying infinitesimal variations in the boundary of G. In the subsequent section, we will explore
how parallel transport serves as a vital link when analyzing this spatial deformation.

As in the Euclidean case, the definition of deformation space (Definition 2.1) naturally gives rise to
the notion of shape di�erentiability with respect to a domain G. We can o

Definition 2.2. The mapping G ‘æ J(G) is said to be shape di�erentiable at G if the underlying
mapping

X(M) æ R
◊ ‘æ J(G◊) = J (F◊(G)))

(2.10)

is Gateaux di�erentiable at ◊ = 0. In this case, the limit

J Õ(G)(◊) = lim
tæ0

J(Gt◊) ≠ J(G)
t

= ˆ

ˆt

----
t=0

J(Ft◊(G))) (2.11)

is called the shape derivative of J at G in the direction ◊.

2.1.2 Relation to parallel transport

This section aims to establish the connection between the concept of “parallel transport” and the
deformation of a domain. To begin, let us provide a formal definition.

Definition 2.3. Let (M, g) be a Riemannian manifold. We say that a smooth vector field ◊ œ X(“)
along a smooth curve “ is said to be parallel along “ if Dt◊ © 0 (where Dt is covariant di�erentiation
along “(t)).
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Theorem 2.1 (Parallel transport). Suppose M is a smooth manifold with or without boundary.
Given a smooth curve “ : I æ M , t œ I, and a vector v œ T“(t)M , there exists a unique parallel
vector field P along “ : I æ M such that P (t) = v. This vector field is called the parallel transport
map of v along “. Additionally, for each t, s œ I, the map defined by:

P “

t,s
: T“(t)M æ T“(s)M (2.12)

v ‘æ V (s) , (2.13)

is called the parallel transport map.

Parallel transport o�ers a means to establish a connection between the geometries of two points,
denoted as p and q, within the manifold M . This connection is achieved through the consideration of a
curve “ : [a, b] æ M , where “(a) = p and “(b) = q. By employing the parallel transport map, we establish
a relationship between the tangent spaces T“(a)M and T“(b)M . This connection becomes evident through
the following definition.

Definition 2.4. Let (b1, . . . , bn) be any basis for T“(a) and let (E1, . . . , En) be the n-tuple of parallel
vector fields obtained by parallel transporting each bi along “. Since the parallel transport map is an
isomorphism, the vectors Ei(t) form a basis for T“(t)M at each point “(t). In this case, (E1, . . . , En)
is called a parallel frame along “.

By utilizing the previous definitions and Lemma 2.2, it becomes possible to analyze the di�erential of
the deformation through the examination of the Jacobi field J(t) along the geodesic “◊(p), for a fixed
vector field ◊ œ X(M). This discussion is not without precedence. In [322], the relationship between
the exponential map and the Jacobian determinant has been established as a means to analyze volume
distortion along geodesic paths. Additionally, this connection provides a consistent way to associate each
element of the tangent space family {T“(t)M}tœI with Rn.

Theorem 2.2. Let p œ M , U µ M a normal neighborhood of p, let b := (b1, . . . , bn) an orthonormal
basis for TpM and E(t) := (E1(t), . . . , En(t)) the parallel orthonormal frame with E(0) = b. In these
coordinates the di�erential of the deformation of space (Lemma 2.2) is a matrix path J : I æ Rn◊n

in the basis E(t), along the geodesic “◊(p) : I æ M , and satisfies:

d2

dt
J(t) + R(t)J(t) = 0 (2.14)

J(0) = In (2.15)
d

dt
J(0) = Ò◊(p) , (2.16)

where In œ Rn◊n is the identity matrix, Ò◊(p) is the Jacobian matrix of ◊ at p in the basis b, and
R(t) is the matrix defined by:

Ri,j(t) = Riem (“Õ(t), Ei(t), “Õ(t), Ej(t)) 1 Æ i, j Æ n , (2.17)

where Riem is the Riemann curvature tensor (Definition D.21).

Proof. Note that for every orthonormal basis b for TpM , there is a unique normal coordinate chart (U, xi)
(cf. e.g. [219]). Moreover, bi = ˆ/ˆxi

--
p
. Hence from now on let us work with the coordinate vectors for

simplicity. Firstly, we write dpF M

t◊
(v) = Jv(t) =

q
n

i=1 J i(t)Ei(t) and “Õ

◊(p)(t) =
q

n

i=1 “i(t)Ei(t) in terms
of the frame E(t). When expressed in this basis, we may consider the matrix J(t) whose entries are given
by:

Ji,j(t) = g“◊(p)(t)
!
J i(t)Ei(t), Ej(t)

"
, 1 Æ i, j Æ n . (2.18)

From (2.4), we have for all t œ I, 1 Æ j Æ n :

g“◊(p)(t)

A
D2

t

A
nÿ

i=1
J i(t)Ei(t)

B
, Ej(t)

B
+ g“◊(p)(t)

A
R

A
nÿ

i=1
J i(t)Ei(t), “Õ

◊(p)

B
“Õ

◊(p), Ej(t)
B

= 0 .
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Since each Ei is parallel (DtEi © 0), we have:

D2
t
Jv(t) =

nÿ

i=1

d2J i

dt2 (t)Ei(t) . (2.19)

Moreover by the multilinearity of the tensors R and Riem, we have:

nÿ

i=1
Riem

1
“Õ

◊(p), Ei(t), “Õ

◊(p), Ej(t)
2

J i(t) = g“◊(p)(t)

A
R

A
nÿ

i=1
J i(t)Ei(t), “Õ

◊(p)

B
“Õ

◊(p), Ej(t)
B

. (2.20)

Both of the equations above give us the first part of (2.14). We can recover the first initial condition by
noting that

Jv(0) = v =
nÿ

i=1
vi

ˆ

ˆxi

----
p

, (2.21)

which implies direcly J(0) = In. Lastly, writing the covariant derivative in terms of the coordinate vectors,
we can see:

DtJv(0) = Òv◊(p) (2.22)

=
nÿ

k=1

Q

a
nÿ

i,j=1
vj◊i(p)�k

ij
(p) +

nÿ

j=1
vj

ˆ◊k

ˆxj

R

b ˆ

ˆxk

----
p

(2.23)

=
nÿ

k=1

Q

a
nÿ

j=1
vj

ˆ◊k

ˆxj

R

b ˆ

ˆxk

----
p

, (2.24)

where the last equality is obtained from the fact that Christo�el symbols �ijk vanish at p by properties
of normal coordinates. Thus:

d

dt
J(0) = Ò◊(x) , (2.25)

where Ò◊(x) denotes the Jacobian matrix of ◊ at x(p) in the basis b.
⌅

Apart from establishing the connection with parallel transport, Theorem 2.2 also provides a framework
for reasoning about the di�erential of the deformation within a normal neighborhood of each point p œ M .
This is particularly valuable when computing derivatives, as it o�ers insights into the volume distortion.
In practical terms, as we will observe, this volume distortion corresponds to the pullback dVF◊

úg of the
volume form dVg by F◊. To illustrate this concept, we can associate the parallel orthonormal frame E(t)
with a matrix path E(t) in Rn◊n. Consequently, both E(t) and J(t) can be visualized as parallelograms
along the geodesic “◊(p)(t). This is depicted in Fig. 2.2. While the volume of E(t) remains constant, the
e�ect of curvature distorts this volume, resulting in J(t).
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(a) Representation of the parallel orthonormal frame E(t) when identified with
a matrix path E(t).

(b) Representation of the parallel orthonormal frame J(t) when identified with
a matrix path J(t), solution to (2.14).

Figure 2.2: Comparison of volume distortion along a geodesic between the parallel orthonormal frame
E(t) and the Jacobi field J(t), both identified with matrix paths, coinciding at t = 0 but potentially
diverging at later times, illustrating the impact of curvature on volume distortion.
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2.2 Shape representation via the signed distance function
The concept of the “signed distance function” to a regular domain G in the manifold M finds a wide
range of applications across various fields. It is commonly used in general level set methods [293, 256], as
well as in collision detection [156] and real-time rendering applications [5]. In the context of shape and
topology optimization, signed distance functions play a significant role due to their ability to precisely
and conveniently represent the shape being optimized. This is particularly relevant in works related to
shape and topology optimization, such as [12, 14, 142]. In this section, we revisit key results concerning
the signed distance function from the point of view of Riemannian geometry. The work of [219] serves as
a reference for these results. To begin, we provide the definition of the signed distance function.

Definition 2.5 (Signed distance function). Let (M, g) be a Riemannian manifold and G a reg-
ular domain of M with closed boundary ˆG. The signed distance function to G on M is the
function dM

G
: M æ R defined by:

’x œ M, dM

G
(x) =

Y
_]

_[

≠dM (x, ˆG) if x œ G

0 if x œ ˆG

dM (x, ˆG) if x œ M\G

, (2.26)

where dM (x, ˆG) denotes the Riemannian distance from a point x œ M to the submanifold ˆG (see
Definition D.23).

We revisit some well known properties regarding the signed distance function.

Proposition 2.1 (Properties of the signed distance function). Let (M, g) a Riemannian man-
ifold and G a regular domain in M . Let U be a tubular neighborhood around ˆG in M . Then:

1. p ‘æ dM

G
(p) is a smooth function on U .

2. The signed distance function dM

G
: U æ R satisfies:

’p œ U, |ÒM dM

G
(p)| = 1. (2.27)

3. The gradient of the signed distance function is given by:

ÒM dM

G
(p) =

Y
_]

_[

nˆG(p) if p œ ˆG,

≠
log

p
(fiˆG(p))

dM

G
(p)

if p œ U \ ˆG.
(2.28)

The concept of the projection of a point q onto a submanifold is closely intertwined with the signed
distance function, and appears commonly in shape derivative expressions on the surface.

Definition 2.6 (Projection onto a submanifold). Let � be a submanifold in M . Let q œ M
and define �M

S (q) as the set of projection onto S given by:

�M

S
(q) := {p œ M : dM (q, p) = dM (q, �)}. (2.29)

Whenever �M

� (q) = {p} is a singleton, we denote the point p as the projection fi�(q) of a point
q œ M onto �.

Theorem 2.3. Let G be a regular domain of M with boundary ˆG. Let ◊(p) := n�. Then there
exists ” > 0 and a tubular neighborhood U” around ˆG such that the mapping:

(≠”, ”) ◊ ˆG æ U”

(t, p) ‘æ Ft◊(p)
(2.30)

is a smooth di�eomorphism. For any q = F M

t◊
(p) œ U” one has:

t = dM

G
(p), and p = fiˆG(q). (2.31)
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Figure 2.3: The shaded region represents a tubular neighborhood U µ M around the boundary ˆG of a
regular domain G. The solid black line arrow marks the projection of a point F M

◊
(p) onto the boundary

ˆG and the solid blue line corresponds to ˆG.

Proof. Since ˆG is a compact embedded submanifold of M , by the tubular neighborhood theorem, there
exists a uniform tubular neighborhood U” in M around ˆG. This neighborhood is the di�eomorphic image
under the exponential map exp|NˆG restricted to the normal bundle N(ˆG) of some subset V” µ N(ˆG),
defined by:

V” = {vp œ N(ˆG) : |vp| < ”}

= {tnˆG(p) œ Np(ˆG) : p œ ˆG, |t| < ”}
(2.32)

for some constant ” > 0. By the definition of tubular neighborhood, we have that there exists a unique
element vp œ N(ˆG) such that q = exp|N(ˆG)(vp). Now choose any normal coordinates x on U and write
vp =

q
n

i=1 vi ˆ

ˆxi
|p in terms of the coordinate vectors. Notice that the curve,

t ‘æ “(t) := Ft◊(p) = exp
p
(tvp)

is a geodesic starting at p œ ˆG with initial velocity vp œ Np(ˆG) and “(0) = p, “(1) = q. This fact
coupled with Proposition D.3 implies that q has the coordinate expression x(q) = (v1

p
, . . . , vn

p
). In these

coordinates, the distance function d(q, ˆG) satisfies (Proposition 6.37 of [219]):

’q œ U”, dM (q, ˆG) = |vp| , (2.33)

whence the following relation:

’q œ U”, ÷!p œ ˆG s.t. vp = dM

G
(q)nˆG(p) . (2.34)

Since dM (q, ˆG) = dM (q, p), by Definition 2.6, we have that p = fiˆG(q).
⌅

Remark 2.3. Essentially, the previous theorem states the projection onto the boundary of G and
the signed distance function are always well in defined some tubular neighborhood U” of radius ” > 0.

The shape derivative of the signed distance function is essential for analyzing shape variations and
plays a key role in the proof of the Hadamard structure theorem. It simplifies the treatment of boundary
deformations and is crucial for deriving the optimality conditions that characterize the geometric structure
of optimal shapes. Next, we will demonstrate how to calculate it.
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Lemma 2.3. Let G be a regular domain of M with boundary ˆG. Define L : O” æ R by:

’p œ U” \ ˆG, L(◊)(p) := dM

G◊
(F M

◊
(p)), (2.35)

where O” µ X(M) as in the start of the proof of Theorem 2.3. Then D is Gateaux di�erentiable at
◊ = 0 and its derivative reads:

’p œ U” \ ˆG, LÕ(0)(◊)(p) = ◊(p) · ÒM dM

G
(p) ≠ ◊(fiˆG(p)) · nˆG(fiˆG(p)). (2.36)

Proof. For simplicity, assume that q œ M \ U”, the complementary case being analogous. From Defini-
tion D.23, one has:

L(◊)(q) = inf
pœˆG

Y
_]

_[
inf

“:[a,b]æM◊

“(a)=F
M
◊ (p), “(b)=F

M
◊ (q)

⁄
b

a

|“Õ(t)| dt

Z
_̂

_\

= inf
pœˆG

Y
_]

_[
inf

‡:[a,b]æM

“(a)=p, “(b)=q

⁄
b

a

----
d

dt

!
F M

◊
(‡(t))

"---- dt

Z
_̂

_\

= inf
pœˆG

Y
_]

_[
inf

‡:[a,b]æM

“(a)=p, “(b)=q

⁄
b

a

--J‡Õ(t)(1)
-- dt

Z
_̂

_\
,

(2.37)

where the last line is obtained via Lemma 2.2, so that J Õ
‡
(t) is the Jacobi field along the geodesic ÷(t)

satisfying:
÷(0) = p, ÷Õ(0) = ◊(p),

J‡Õ(t)(0) = ‡Õ(t), DtJ(0) = Ò÷Õ(t)◊(p).
(2.38)

Clearly, for ◊ = 0, we have J‡Õ(t)(1) = J‡Õ(t)(0) = ‡Õ(t), and clearly the infimum is attained by the
unit-speed geodesic connecting p = fiˆG(q) to q, with a = 0, b = dM

G
(q). Theorem B.2 entails that D is

di�erentiable at ◊ = 0 and:

LÕ(◊)(0) =
⁄

b

a

1
|‡Õ(t)|DsJ‡Õ(t)(0) dt

=
⁄

d
M
G (q)

0
Ò‡Õ(t)◊(‡(t)) · ‡Õ(t) dt

=
⁄

d
M
G (q)

0
Dt◊(t) · ‡Õ(t) dt

(2.39)

where we go from the first to second line by Remark 2.2, the fact that ‡(t) has unit speed and the
definition ◊(t) := ◊(‡(t)). The third line is just using the definition of covariant derivative along the curve
‡(t). Note that:

Dt(◊(t) · ‡Õ(t)) = Dt◊(t) · ‡Õ(t) + ◊(t) · Dt‡
Õ(t) = Dt◊(t) · ‡Õ(t), (2.40)

since Dt‡Õ(t) = 0 by Definition D.14. Hence, applying the fundamental theorem of calculus:

LÕ(◊)(0) =
⁄

d
M
G (q)

0

d

dt
(◊(t) · ‡Õ(t)) dt

= ◊(dM

G
(q)) · ‡Õ(dM

G
(q)) ≠ ◊(0) · ‡Õ(0)

= ◊(q) · ÒM dM

G
(q) ≠ ◊(fiˆG(q)) · nˆG(fiˆG(q))

(2.41)

The last line follows from Proposition 2.1.
⌅
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Remark 2.4. The formula (2.36) is of ‘Lagrangian’ nature: for given p œ M , the derivative of the
distance function to the perturbed set G◊ at the perturbed point F M

◊
(p) is calculated. Using the more

classical notation d̊M

G
(◊) = LÕ(0)(◊) for this derivative, the corresponding Eulerian derivative (dM

G
)Õ(◊)

of dM

G
is then defined by the formula:

(dM

G
)Õ(◊)(p) := d̊G(◊)(p) ≠ ÒM dM

G
(p) · ◊(p)

= ≠◊(fiˆG(p)) · nˆG(fiˆG(p)).

We shall give more details on the di�erence between Lagrangian and Eulerian derivatives in the next
sections.

2.3 Generalities of shape derivatives on manifolds
In this section, we provide a broad overview of the key concepts and mathematical tools necessary for
understanding and working with shape derivatives on manifolds. We will introduce the fundamental
concepts, relevant mathematical tools, and provide an overview of the key results that are pivotal for
understanding and computing shape derivatives in manifold settings.

2.3.1 Structure of shape derivatives for a regular domain in the ambient
space

In shape optimization, Hadamard’s structure theorem reveals that the derivative of a shape functional
depends solely on how the domain’s boundary moves in the normal direction. Tangential movements
along the boundary have no impact on the derivative. We are now poised to extend and prove this
powerful theorem in the context of Riemannian manifolds.

Theorem 2.4 (Hadamard’s structure theorem). Let G µ M be a regular domain with closed
boundary ˆG, let nˆG denote the outward-pointing unit normal vector field along ˆG, and let J(G) a
shape di�erentiable functional with shape derivative J Õ(G)(◊) for ◊ œ X(M).

1. There exists a tubular neighborhood U” of radius ” > 0 and a continuous linear form ¸” :
CŒ(U”) æ R such that:

J Õ(G)(◊) = ¸”((◊ · nˆG) ¶ fiˆG) . (2.42)

2. If ◊1, ◊2 œ X(M) are two vector fields such that ◊1 · nˆG = ◊2 · nˆG, then:

J Õ(G)(◊1) = J Õ(G)(◊2) . (2.43)

Proof. Define a neighborhood O” µ X(M) by:

O” := {◊ œ X(M) : ’p œ ˆG, F◊(p) œ U”} µ O, (2.44)

where O is the neighborhood in Lemma 2.1, and U” is a su�ciently small tubular neighborhood of radius
” > 0. Such a tubular neighborhood exists by Theorem 2.3. We seek to prove that, for a judiciously
chosen function F , we can express the underlying map E(◊) := J(G◊) as follows:

E(◊) = F(≠dM

G◊
) , (2.45)

where dM

G◊
is the signed distance function to G◊. We can assume that our domain G is connected;

otherwise conduct the same analysis on the individual components. We note that whenever ◊1, ◊2 œ OU ,
the following implication holds true:

ˆG◊1 = ˆG◊2 =∆ G◊1 = G◊2 . (2.46)

Indeed, consider � := (F◊2)≠1
¶ (F◊1) and suppose ˆG◊1 = ˆG◊2 , then:

�(ˆG) = F M

◊2

≠1 (ˆG◊1) = F M

◊2

≠1 (ˆG◊2) = ˆG , (2.47)
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Figure 2.4: The shaded region shows a tubular neighborhood U µ M around the boundary ˆG of a
regular domain G. The solid blue line denotes ˆG.

and by connexity �(G) = G. Now let ^dM

G◊
nˆG œ X(M) be an extension of dM

G◊
nˆG to all of U (such an

extension always exists since ˆG is closed). At the same time note that, by the previous reasoning, the
choice of extension does not a�ect the following calculations. Define the function F : CŒ(U) æ R by:

’Â œ CŒ(U), F(Â) := J(F
Â̂nˆG

(G)) . (2.48)

Note that for all p œ ˆG, q := F M

◊
(p), we have:

≠dM

G◊
(fiˆG(q)) = dM

G
(q). (2.49)

Since ◊ œ OU , F M

◊
is a smooth bijection, and by Theorem 2.3, we have that for all p œ ˆG, then

F M

◊
(p) = exp

fiˆG(q)

---
N(ˆG)

!
dM

G
(q)nˆG(fiˆG(q))

"
(2.50)

= exp
fiˆG(q)

---
N(ˆG)

!
≠dM

G◊
(fiˆG(q))nˆG(fiˆG(q))

"
(2.51)

= F M

≠d
M
G◊

nˆG
(fiˆG(F M

◊
(p))) , (2.52)

Hence,

ˆG◊ = F M

◊
(ˆG) = F M

≠d
M
G◊

nˆG
(fiˆG(ˆG)) = F M

≠d
M
G◊

nˆG
(ˆG) =∆ G◊ = F M

≠
^

d
M
G◊

nˆG

(G) , (2.53)

whence,

’◊ œ O”, E(◊) = J

3
(F M

≠
^

d
M
G◊

nˆG

(G)
4

= F(≠dM

G◊
) . (2.54)

Taking the Gateaux derivative, coupled with Lemma 2.3, we are able to deduce:

E
Õ(0)(›) = F

Õ(0)(≠(◊ ‘æ dM

G◊
)Õ(0)(›)) = F

Õ(0)((› · nˆG) ¶ fiˆG) , (2.55)

where the last equality is obtained by the first part of the proof. Finally, since ¸” := F(0) is a continous
linear form on X(U) by definition, we can conclude:

J Õ(G)(◊2) ≠ J Õ(G)(◊1) = ¸”(◊2 · nˆG) ≠ ¸(◊1 · nˆG) = ¸”((◊2 ≠ ◊1) · nˆG) = 0 . (2.56)
⌅
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Lemma 2.4. There exists a continous linear form ¸ : CŒ(ˆG) æ R such that:

J Õ(G)(◊) = ¸(◊ · nˆG) . (2.57)

Proof. Define the restriction of the projection fi”

ˆG
: U” æ ˆG as:

fi”

ˆG
:= fiˆG|U” , (2.58)

and note that, since we are in the tubular neighborhood, the distance from the projection to the point is
less than ”:

’q œ U”, d(q, ˆG) = d(fiˆG(q), q) Æ ”. (2.59)
Thus, as ” æ 0, we have that d(q, ˆG) æ 0 and thus there exists a sequence {fi”

ˆG
} such that fi”

ˆG
æ Id,

with Id the identity mapping on ˆG. Since the space of smooth functions CŒ(U”) is a Fréchet space, it
is by definition complete. Since ¸” is a continuous linear functional for each su�ciently small ” > 0, there
exists some continuous linear functional ¸ on CŒ(ˆG) such that it is the limit point of ¸” as ” æ 0.

⌅

The validity of the Hadamard structure theorem within this framework of shape derivative is expected.
The proof follows a similar approach to that presented in [184], where an appropriate linear functional
is constructed and the implicit function theorem is applied. In our proof, we also construct a suitable
functional that leads to the desired result. However, instead of using the implicit function theorem, we
employ the tubular neighborhood theorem. The key geometric insight is that for p œ M and su�ciently
small ◊ œ X(M), the transported points F M

◊
(p) lie within a tubular neighborhood of ˆG. By definition,

this tubular neighborhood is the di�eomorphic image of an open subset in the normal bundle of the
boundary under the exponential mapping. This concept is illustrated in Fig. 2.4.

2.3.2 Structure of shape derivatives for a regular domain in a hypersurface
of the ambient manifold

Utilizing the technique shown in the proof of Theorem 2.4 one can obtain a similar result for the structure
of a domain.

Lemma 2.5. Let S denote a hypersurface in M and denote its second fundamental form by II. Let
G be a regular domain of S with boundary ˆG. Define L : O” æ R by:

’p œ U” \ ˆG, L(◊)(p) := dS

G◊
(F M

◊
(p)), (2.60)

where O” µ X(M) as in the start of the proof of Theorem 2.3. Then D is Gateaux di�erentiable at
◊ = 0 and its derivative reads:

’p œ U” \ ˆG, LÕ(0)(◊)(p) = ◊(p) · ÒSdS

G
(p) ≠ ◊(fiˆG(p)) · nˆG(fiˆG(p))

≠

⁄
d

S
G(p)

0
◊(‡(t)) · II(‡Õ(t), ‡Õ(t)) dt,

(2.61)

where ‡(t) denotes the geodesic on S connecting fiˆG(p) to p.

Proof. Note that we can follow exactly the same steps as those in the proof of Lemma 2.3 to deduce that:

LÕ(◊)(0) =
⁄

d
S
G(q)

0
DM

t
◊(t) · ‡Õ(t) dt, (2.62)

where DM

t
denotes covariant di�erentiation in M , with ◊(t) := ◊(‡(t)). The di�erence between this case

and the other one, is that ‡(t) need not be a geodesic in M , thus the equality DM

t
‡Õ(t) = 0 is not true in

general. We can, however, apply the Leibniz integral rule to obtain:

LÕ(◊)(0) = ◊(dM

G
(q)) · ‡Õ(dM

G
(q)) ≠ ◊(0) · ‡Õ(0) +

⁄
d

S
G(q)

0
◊(t) · DM

t
‡Õ(t) dt

= ◊(q) · ÒSdS

G
(p) ≠ ◊(0) · ‡Õ(0) ≠

⁄
d

S
G(q)

0
◊(t) · II(‡Õ(t), ‡Õ(t)) dt,
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where the last line follows from the identity:

DS

t
‡Õ(t) = DM

t
‡Õ(t) + II(‡Õ(t), ‡Õ(t)), (2.63)

and the fact that DS

t
‡Õ(t) = 0 since ‡(t) is a geodesic on S.

⌅

Utilizing the previous result, one can prove the following proposition. Its proof omitted since it is
analogous to that of Theorem 2.4.

Proposition 2.2. Let S denote a hypersurface contained in M and let G µ S be a regular domain
with closed boundary ˆG, let nˆG denote the outward-pointing unit normal vector field along ˆG, and
let J(G) a shape di�erentiable functional with shape derivative J Õ(G)(◊) for ◊ œ X(M). Then, there
exists a tubular neighborhood U” µ M of radius ” > 0 and a continuous linear form ¸” : CŒ(U”) æ R
such that:

J Õ(G)(◊) = ¸”

A
p ‘æ ◊(fiˆG(p)) · nˆG(fiˆG(p)) +

⁄
d

S
G(p)

0
◊(‡(t)) · II(‡Õ(t), ‡Õ(t)) dt

B
, (2.64)

where ‡(t) denotes the geodesic in S, connecting p to fiˆG(p).

This behavior is confirmed and detailed in Chapter 4, where we set M = Rd and S = ˆ� for a regular
domain � µ M . A significant implication of this theorem is that for vector fields ◊ œ X(Rd) satisfying
◊ · nˆ� = 0, the structure can be expressed as:

J Õ(G)(◊) = ¸”(◊ · nˆG), (2.65)

because II is also oriented in the normal direction. This indicates that the final shape derivative depends
solely on the normal to the domain G and not on nˆ�.

2.3.3 Computation of shape derivatives
With a solid understanding of the structure of shape derivatives, we can proceed to their calculation.
Typically, it is more convenient to work with a fixed or static domain rather than a deformed one. As a
result, many proofs in this context begin with a change of variables. Following this approach, we present
the version of the change of variables theorem that will be employed in our calculations. Additionally,
it is crucial to consider that the following theorem incorporates the volume distortion caused by the
di�eomorphism „, which is reflected in the pullback term dV„úg. This term accounts for the impact of
shape deformation on the volume element.

Theorem 2.5. Consider N a smooth manifold and „ : N æ M a di�eomorphism. Then for any
smooth function f : M æ R we have:

⁄

M

f dVg =
⁄

N

f ¶ „ dV„úg , (2.66)

where „úg is the pullback of g by „.

Theorem 2.6. Let f : M æ R a smooth function and define the shape functional J by

J(G) :=
⁄

G

f dVg . (2.67)

Then J is shape di�erentiable at any G and

J Õ(G)(◊) =
⁄

ˆG

f◊ · N dVĝ , (2.68)

where ĝ is the induced metric on ˆG.
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Proof. By a change of variables we have:

J(Gt◊) =
⁄

Gt◊

f dVg =
⁄

G

f ¶ F M

t◊
dVF

ú
t◊

g , (2.69)

where F ú

t◊
g is the pullback of g by F M

t◊
. Let {U–}–œA be an indexed open cover of G with associated

charts {x–}–œA, and {Â–}–œA a smooth partition of unity subordinate to this cover. Then:
⁄

G

f ¶ Ft◊ dVF
ú
t◊

g =
ÿ

–

⁄

x–(U–)
f ¶ Ft◊ ¶ x≠1

–

Ò
|det (F ú

t◊
g)ij | ¶ x≠1

– Â– dx . (2.70)

Shrinking U– if necessary, we may assume that it is a normal neighborhood. From Theorem 2.2 we know
that, for a parallel orthonormal frame E(t) := (E1(t), . . . , En(t)), the matrix components of the pullback
metric can be expressed in terms of the Jacobi field Jv(t) along “◊(p):

(F ú

t◊
g)

ij
(p) = g“◊(p)(t)

!
JEi(t)|p

(t), JEj(t)|p
(t)

"
(2.71)

= g“◊(p)(t)

A
nÿ

k=1
Jk

Ei(t)|p
Ek(t),

nÿ

k=1
Jk

Ej(t)|p
Ek(t)

B
(2.72)

= g“◊(p)(t)
!
J iEi(t), JjEj(t)

"
, (2.73)

for 1 Æ i, j Æ n. Whence:
Ò

|det (F ú

t◊
g)ij | ¶ x≠1

– =
Ò

|det (JT (t)J(t))| , (2.74)

where J(t) is the matrix path described in Theorem 2.2. Di�erentiating each chart at t = 0 shows:

ˆ

ˆt

----
t=0

C⁄

x–(U–)
f ¶ Ft◊ ¶ x≠1

–

Ò
|det (JT (t)J(t))|Â– dx

D
=

⁄

x–(U–)

A
nÿ

i=1

ˆf

ˆxi
◊i + f

nÿ

i=1

ˆ◊i

ˆxi

B
¶x≠1

–
Â– dx ,

where the left side of the product rule is computed by utilizing the fact that dpexp
p
(0) = IdTpM , and the

right side is an application of Jacobi’s formula (Theorem B.1) coupled with (2.14). Finally, recall the
divergence of a vector field will read in local coordinates:

ÒM · ◊ = 1
det gij

nÿ

i=1

ˆ

ˆxi

1
◊i


det gij

2
(2.75)

and note that for t = 0, we have F ú

t◊
g = g,


| det gij | =


| det F ú

t◊
gij | = 1. Therefore, we obtain:

ˆ

ˆt

----
t=0

J(Gt◊) =
⁄

G

ÒM · (f◊) dVg =
⁄

ˆG

f◊ · nˆG dVĝ , (2.76)

where the last step is just the divergence theorem.
⌅

2.3.4 Shape functionals constrained by a partial di�erential equation
In this section we analyze functionals which are of the form:

J(G) =
⁄

G

j(uG) dVg , (2.77)

where uG œ CŒ(G, Rn) is the solution to a PDE posed on a regular domain G of the manifold M and
j : Rn

æ R is a suitably chosen function. For simplicity, we analyze the case where uG is the smooth
solution to the Laplace-Beltrami equation:

I
≠�M uG = f in G

uG = 0 on ˆ G,
(2.78)

where ≠�M denotes the Laplace-Beltrami operator on M . The fact that this equation be on a surface
poses does not add complexity for its numerical resolution and theoretical treatment. The study [55]
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provides an extensive survey of numerical methods and provides all the theoretical results needed for
deriving the weak formulation on the surface. Alternatively, texts such as [220] provide the rigorous
extension to Riemannian manifolds for results such as the divergence theorem.

In general, the form (2.77) is very common in applications and the literature of shape optimization
[15]. Let us mention that even though we assume that the solution uG be smooth, the same techniques
presented in this section could be applied to functions belonging to Ck(G, Rn), k Ø 0 without too much
additional work. Moreover, when working with Sobolev spaces and a weaker notion of di�erentiability,
one can often deduce the CŒ regularity of the solution uG via variational estimates or, most notably,
the classical theory of elliptic regularity (cf. e.g. [172, 139, 150, 165]). In order to express the shape
derivative of (2.77), it proves useful to consider the definitions of transport mapping and Lagrangian
derivative of uG. Note that these concepts have been defined for the Euclidean case in Section 1.2.

Definition 2.7 (Transport mapping). For all ◊ œ X(M), the transport mapping of uG is
formally defined by:

uG(◊) := uG◊ ¶ F M

◊
, (2.79)

where F◊ is the deformation of domain on M .

Definition 2.8 (Lagrangian derivative). Assume that ◊ ‘æ uG(◊) is Gateaux di�erentiable at
◊ = 0. If this is the case, we say that G ‘æ uG has a Lagrangian derivative at G in the direction
◊ and we denote it by ůG(◊).

The definition of Lagrangian derivative contrasts with the concept of Eulerian derivative (see Defini-
tion 1.4 for the Euclidean counterpart). In the case of the latter, we consider the Gateaux derivative of
the mapping:

◊ ‘æ uG◊ , (2.80)

which, for small ◊, is well defined on the deformed domain G◊. On the contrary, the value of uG is not
well defined on the deformed boundary ˆG◊. Indeed, for x œ ˆG the value uG(F M

◊
(x)) at the transported

point F M

◊
(x) œ M will not necessarily make sense because it need not lie on G or ˆG. To this end, it

proves useful to seek an alternative characterization of the Eulerian derivative in terms of the Lagrangian
derivative. Formally, writing the definition of ůG(◊) at p œ M yields:

ůG(◊)(p) = ˆ

ˆt

----
t=0

1
uF

M
t◊

(G) ¶ F M

t◊

2
(p) (2.81)

= ˆ

ˆt

----
t=0

1
uF

M
t◊

(G)

2
(p) + ÒM uG(p) · dpF M

0 (◊) (2.82)

= uÕ

G
(◊)(p) + ÒM uG(p) · ◊(p) , (2.83)

where we have used the chain rule and Lemma 2.2. This naturally suggests the following definition of
Eulerian derivative.

Definition 2.9 (Eulerian derivative). If uG œ CŒ(G) has a Lagrangian derivative at G, then
the Eulerian derivative uÕ

G
(◊) is defined by:

uÕ

G
(◊) := ůG(◊) ≠ ÒM uG · ◊ . (2.84)

The Eulerian derivative is notably utilized in the proof of Theorem 2.4, where the expression for
the Eulerian derivative of the signed distance function is employed. This connection suggests that the
Eulerian derivative is closely related to the concept of the surfacic expression for the shape derivative (see
Section 1.2). We shall omit the use of the Eulerian derivative since it

Theorem 2.7. Let J(G) be defined by (2.77) where uG œ CŒ(M) depending on G. Then its shape
derivative in the direction ◊ œ X(M) reads:

J Õ(G)(◊) =
⁄

G

jÕ(uG)̊uG(◊) + j(uG)ÒM · ◊ dVg . (2.85)
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Proof. Making a change of variables yields:

J(Gt◊) =
⁄

G

j(uGt◊ ¶ F M

t◊
) dVF

ú
t◊

g =
⁄

G

j(uG(◊)) dVg. (2.86)

After choosing smooth coordinate charts {(U–, x–)}–œA and a subordinate partition of unity {Â–}–œA,
we compute (similarly as in the proof of Theorem 2.6):

ˆ

ˆt

----
t=0

⁄

x–(U–)
j(uG(t◊) ¶ x≠1

–
)
Ò

|det (F ú

t◊
g)ij | ¶ x≠1

– Â– dx (2.87)

=
⁄

x–(U–)

A
jÕ(uG)̊uG(◊) + j(uG)

nÿ

i=1

ˆ◊i

ˆxi

B
¶ x≠1

–
Â– dx, (2.88)

whence the result.
⌅

Following very similar approaches, one can eventually obtain the exact same analogous expression for
the Euclidean case.

Proposition 2.3. Assume that uG and pG are in H2(G). Then,

’◊ œ O, J Õ(G)(◊) =
⁄

ˆG

j(uG) ◊ · nˆG ds ≠

⁄

ˆG

ˆuG

ˆnˆG

ˆpG

ˆnˆG

◊ · nˆG ds ≠

⁄

ˆG

fpG◊ · nˆG ds,

where p is the solution to the boundary vale problem:
I

≠�M pG = ≠jÕ(uG) in G

pG = 0 on ˆG.

2.4 Future work
The primary objective of this chapter has been to lay the groundwork for shape derivatives within the
Riemannian context, setting the stage for future research. While some significant results were not fully
developed here due to time constraints, the findings presented are intended as a starting point for further
exploration. For instance, various versions of Hadamard’s structure theorem could be derived, each suited
to di�erent Riemannian settings. Additionally, exploring the connection between tubular neighborhoods
and shape derivatives o�ers a promising avenue for extending the theory introduced in this chapter.
Furthermore, deriving additional results for shape calculus in the Riemannian context would provide a
robust theoretical foundation for advancing geometric shape optimization.
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Chapter 3

Body-fitted tracking within a surface
via a level set based mesh evolution
method

The broad task of representing the evolution of a domain G(t) µ Rd (d = 2 or 3 in practice) has
sparked extensive mathematical and numerical investigations. This topic plays a central role in various
applied disciplines, ranging from computer graphics and vision [79, 350] to the numerical simulation
of physical phenomena such as fracture propagation [60] or fluid interface dynamics [90, 96], including
inverse problems and shape optimization [22, 29, 69].

Multiple numerical strategies have been proposed to address this task, with competing assets and
drawbacks. However, all implementations face a major challenge: in complex, realistic situations, the
velocity field V (t, x) driving the motion of G(t) has a physical origin and depends on high-order geometric
features of this region (notably, the curvature of ˆG(t)), or on the solution to a boundary value problem
posed on the latter. It is then notoriously di�cult to find a framework reconciling an accurate description
of G(t) allowing for precise calculations of these quantities at any time t – which ideally demands an
exact, high-quality mesh – with the robust treatment of its evolution.

In this regard, Lagrangian strategies, tracking the evolution of an exact mesh of G(t) by displacing
its vertices according to V (t, x) between successive iterations of the process, are usually undermined by
a severe degradation of the quality of the mesh, which rapidly becomes invalid and incompatible with
computations, see e.g. [132, 133]. Admittedly, several heuristics enhance the robustness of this practice.
For instance, one may alternate deformations of the mesh with occasional remeshing steps aimed to
improve its quality. Going further, one may detect and remove ill-shaped elements before they lead to
complete degeneracy, or even modify the velocity of the internal vertices of the mesh to reduce the onset
of overlapping patterns, see e.g. [37, 46, 75, 123, 341] about these ideas.

In this spirit, the recent Deformable Simplicial Complex technique has demonstrated the ability to
cope with impressively large motions by using the formation of nearly degenerate mesh elements near
the boundary of the domain as a trigger for topological changes, see [89, 88, 239]. Even more recently,
the X-mesh method [240] proceeds by displacing the vertices of the mesh of G(t) according to V (t, x)
up the point where the measure of some elements equals zero. The motion is then relayed between
neighboring nodes while preserving the connectivity of the mesh. This strategy rests on the assumption
that boundary value problems can be e�ectively solved on meshes with degenerate elements, under
appropriate assumptions on their aspect ratios. Despite these noteworthy achievements, let us emphasize
that such Lagrangian mesh deformation strategies are usually reserved for the description of “relatively
small” motions of the set G(t).

To overcome the weaknesses of Lagrangian strategies, Eulerian interface capturing techniques are
based on an implicit description of the moving shape G(t). Among these, the level set method, introduced
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in [258], features a description of G(t) as the negative subdomain of an auxiliary “level set function”
„(t, ·) : Rd

æ R defined on the whole ambient space Rd, see [257, 293]. The domain G(t) is never meshed
explicitly, being rediscovered at each iteration of the process from the values of „(t, ·). Although it allows
to describe arbitrarily large motions, such an implicit representation is unfortunately less amenable to
the accurate solution of partial di�erential equations defined on G(t).

These central and popular questions in the numerical analysis of the motion of a domain G(t) have
received surprisingly little attention when the ambient medium is a manifold – notably a surface S in R3;
yet, this alternative context embraces multiple applications of interest:

• Geometric flows, such as the mean curvature flow or the Willmore flow, where the velocity field
V (t, x) depends on high-order geometric features of G(t), can be adapted to the case of a region
within a surface [316].

• Diverse operations of interest in the field of computer graphics are conveniently formulated in terms
of the evolution of a region within a surface. For instance, one popular model for the generation of
textures on a surface relies on the resolution of a reaction-di�usion equation, see e.g. [319, 328]; also,
image segmentation on surfaces can be addressed thanks to a suitable adaptation of the Chan-Vese
algorithm [316].

• Various physical evolution problems occur within a surface, see for instance [248] about the
solidification of a thin fluid film front on a surface substrate, and [315] about the dynamics of phase
changes on surfaces in material science.

• The wish to optimize the shape of regions within a given ambient surface arises for instance in
the optimal design of shells [318], of curvilinear electronic devices [208], in the context of surface
flows [117], or in the identification of optimal fixation systems for mechanical structures, see e.g.
[108, 333].

To the best of our knowledge, the first numerical simulations of the evolution of a region G(t) within
a surface S, proposed in [87] and [204], were concerned with the geodesic curvature flow. These leverage
a version of the level set method tailored to the datum of S as a parametrized patch, or as the graph of a
function defined on the 2d space, respectively. A more general setting is proposed in [54] and [84], where
the closed surface S :=

)
x œ Rd, Â(x) = 0

*
is represented as the 0 level set of a fixed function Â : Rd

æ R,
and G(t) = {x œ S, „(t, x) < 0} is the negative subregion of S induced by another (time-dependent) level
set function „(t, ·) : Rd

æ R. Here and in the subsequent investigations in this framework [53, 169, 281],
the equation governing the evolution of the level set function „(t, ·) is formulated in the whole space Rd

with the help of projection operators. Another series of contributions [231, 278] leverages the so-called
closest point method of [230], devoted to the solution of partial di�erential equations on surfaces. As the
latter solely requires the datum of a mapping associating to any point x œ Rd one closest point (in terms
of Euclidean distance) to the surface S, this latter framework leaves the room for S to be open.

The present chapter aims to introduce a robust numerical methodology for tracking arbitrarily large
motions of a region G(t) within an ambient surface S µ R3 – including changes of its topology – while
maintaining an exact meshed representation of the latter throughout the process. The proposed strategy
is a natural extension of the earlier works [12, 13, 14] – which were devoted to evolving domains of the
Euclidean space Rd – to the present context where the ambient medium is a surface S in Rd. It combines
two complementary representations of G(t) at each stage of the evolution: on the one hand, G(t) is
explicitly discretized, as a submesh of a high-quality surface triangulation T of the ambient surface S,
which allows to accurately calculate its geometric features or to solve related boundary value problems
via the finite element method – and thereby to evaluate the velocity field V (t, x) precisely. On the other
hand, G(t) is described implicitly via the level set method, as the negative subdomain of a scalar function
„(t, ·) : S æ R, so that arbitrarily large motions of G(t) can be realized. The cornerstone of this strategy
is a set of e�cient meshing algorithms and numerical schemes for passing from one representation to the
other.

This chapter is organized as follows. In the next Section 3.1, we present in more details the issue
of tracking the evolution of a region within a surface. Then, in Section 3.2, we describe the proposed
numerical strategy to realize this task and we detail its main ingredients; we notably discuss the calculation
of the signed distance function to a region on a surface, the resolution of the level set evolution equation in
this context, and our main remeshing operations dedicated to surface triangulations. Interestingly, these
numerical methods are implemented in open-source codes which can easily be used in a black-box fashion.
A few numerical applications of our framework are presented in Sections 3.3 to 3.5: after appraising its
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e�ciency on an analytical test-case, we consider the motion of a complex interface accounting for a fire
front, whose expansion within a fixed landscape is driven by geometric quantities attached to the fire and
those of the landscape.

3.1 Evolution of a region on a surface in the level set framework
This section introduces the issue of evolving regions within a surface and sets the main notations used
throughout.

Let S be a smooth hypersurface, with or without boundary, in the d-dimensional space Rd. Here, d
equals 2 or 3, and although we shall focus on the three-dimensional case d = 3, which is on any point more
challenging than its 2d counterpart, we retain the generic notation d whenever possible. For simplicity
of the discussion, the hypersurface S is assumed to be oriented, but our developments and numerical
methods extend readily to the case of a non-orientable surface. For any point x œ S, nS(x) is the unit
normal vector to S at x and the tangent plane to S at x – that is, the vector plane orthogonal to nS(x) –
is denoted by TxS :=

)
v œ Rd, v · nˆ�(x) = 0

*
.
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Figure 3.1: Example of a region G(t) of a three-dimensional surface S evolving according to a tangential
velocity field V (t, x).

Let G µ S be a smooth open subdomain of S with boundary � := ˆG. For x œ �, we denote by
n�(x) œ TxS the conormal vector to � at x, pointing outward G, see Fig. 3.1. Let V : (0, T ) ◊ S æ R3

be a smooth vector field defined over the considered time period (0, T ), which is tangential to S, that is:

’t > 0 and x œ S, V (t, x) œ TxS. (3.1)

We wish to track the region G(t) evolving from G(0) © G under the e�ect of V (t, x) over [0, T ]. This
notion of evolution is intuitively defined as follows: for any x œ S, let t ‘æ ‰(t, 0, x) be the characteristic
curve of V emerging from x at time 0, i.e. the solution to the ordinary di�erential equation

; d‰

dt
(t, 0, x) = V (t, ‰(t, 0, x)), for t œ (0, T ),

‰(0, 0, x) = x.
(3.2)

The region G(t) is then defined as the set of the positions occupied at time t by the points lying in G at
time 0:

G(t) =
Ó

‰(t, 0, x), x œ G
Ô

. (3.3)

The numerical simulation of domain evolution has long been a challenging issue. Among the numerous
frameworks implemented to achieve this goal, the level set method has proved to be particularly convenient
since its introduction in [258]; we refer to [257, 293] for a presentation of various aspects of the level
set method and its countless applications in scientific computing, see also [163] about its mathematical
aspects and its impact on the theory of moving domains.

In the context of the present chapter, where the ambient medium is a surface S µ Rd and G µ S is
an open region with boundary � := ˆG, an auxiliary “level set” function „ : S æ R is introduced, whose
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negative subset coincides with G, that is:

’x œ S,

Y
]

[

„(x) < 0 if x œ G,
„(x) = 0 if x œ �,
„(x) > 0 otherwise.

(3.4)

A formal use of the chain rule reveals that if G(t) is a smooth region of S evolving according to a smooth
tangential velocity field V (t, x) over a time period [0, T ], any associated level set function „(t, x) satisfies
the so-called level set advection equation:

ˆ„

ˆt
(t, x) + V (t, x) · ÒS„(t, x) = 0, t œ (0, T ), x œ S, (3.5)

where ÒS„ := Ò„ ≠ (Ò„ · n) n denotes the tangential gradient of the function „ (with respect to the
spatial variable). Alternatively, introducing the component v(t, x) of V (t, x) in the direction of the
conormal vector n�(t)(x) = ÒS„(t,x)

|ÒS„(t,x)|
to G(t), that is

v(t, x) := V (t, x) · n�(t)(x), (3.6)

the equation (3.5) rewrites as a Hamilton-Jacobi equation:

ˆ„

ˆt
(t, x) + v(t, x)|ÒS„(t, x)|= 0, , t œ (0, T ), x œ S. (3.7)

In our applications, notably those targeting the description of the evolution of physical interfaces, the
velocity field V (t, x) may depend on the moving region G(t) in a very complicated way, often not only
through geometric quantities but also via the solution to partial di�erential equations involving G(t).
Hence, the velocity field V (t, x) and its normal component v(t, x) in (3.6) depend in an implicit way on
G(t), and thus on „ itself. The only realistic means to address the numerical resolution of (3.5) is a fully
explicit procedure: the total time interval (0, T ) is decomposed into a series of subintervals of the form
(tn, tn+1), which are “small enough” so that V (t, x) can be frozen in time, that is

’t œ (tn, tn+1), V (t, x) ¥ V (tn, x);

this practice leads to the solution of a series of “true” advection equations of the form (3.5) with
time-independent fields V (tn, ·) computed from the region G(tn) (or the level set function „(tn, ·)). An
alternative approach consists in freezing only the normal component v(t, x) over each subinterval (tn, tn+1),
i.e.

’t œ (tn, tn+1), v(t, x) ¥ v(tn, x),

which leads to the resolution of a series of “true” non linear Hamilton-Jacobi equations of the form (3.7),
with time-independent normal velocities v(tn, ·). This second possibility retains more information from
the original evolution equation (3.5) (namely, the fact that the motion is consistently oriented in the
direction of the normal vector n�(t)), but it requires the solution of more complex, non linear evolution
equations.

Remark 3.1. In physical applications, the velocity V (t, x) of the region G(t) often makes sense only
on the boundary �(t), while the formalism of the level set method requires that it should extended to
the whole surface S, see (3.5) and (3.7). Actually, it is a classical feature of the level set method that
under “mild assumptions”, the 0 level set of the solution to (3.5) or (3.7) does not depend on the
choice of such an extension for V (t, ·) outside �(t), see [163]. In practice, however, the choice of a
particular extension may have a great impact on the numerical realization of the motion of G(t), and
it may be conducted di�erently depending on the application, see Section 3.3 for several examples.
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Remark 3.2. From the mathematical viewpoint, the intuitive definition (3.3) of the evolving region
G(t) makes sense as long as G(t) and V (t, x) are “smooth enough”, which is usually the case when
the time t is “small enough”. Unfortunately, even in the case of a “simple” flow, featuring a “smooth”
initial state G(0), the region G(t) or the velocity V (t, x) will inevitably become singular in finite time
[27, 163]. One possibility to define a generalized motion (3.3) beyond this point rests on the level set
method: considering one level set function „(0, ·) for the initial region G(0), the evolution equation
(3.5) is solved in the generalized sense of viscosity, see [97], or again [27, 163] about this notion. It
turns out that, under reasonable assumptions, (3.5) has a unique viscosity solution „(t, ·), from which
G(t) is then defined by

G(t) :=
Ó

x œ S, „(t, x) < 0
Ô

.

Such theoretical questions have been extensively studied, particularly in situations where V (t, x)
is composed of geometric quantities attached to G(t), see for instance [192] about the study of
the mean curvature flow within a surface. Without entering into details, let us mention a few
concurrent attempts to the level set method aimed at generalizing this motion of G(t) past the onset
of singularities.

• Parametric methods insist on the description (3.3) of the evolving region G(t), relying on a
(tedious) classification of the various types of possible singularities and on an appropriate
selection of what is the “correct” evolution of G(t) in each case, see for instance [135].

• Varifold solutions were initially proposed in [61] to deal with the problem of domain evo-
lution. These are measure-theoretic solutions which unfortunately lack uniqueness in their
characterization of the evolving set G(t).

• Phase field methods were introduced in this mathematical context in [64, 82, 115]. They encode
the evolution problem of G(t) into a a scalar “phase field” function, taking values ≠1 “well
inside” G(t) and 1 “well outside” G(t); the thin transition region between both zones is sought
as the solution to an energy minimization problem, see [128] for a recent overview.

3.2 Presentation of the numerical strategy

In this section again, G(t) denotes a region of a fixed surface S µ Rd, evolving over a time period (0, T )
according to a tangential velocity field V (t, x), see (3.1). We do not specify the nature of V for the
moment, but we assume that the calculation of V (t, ·) : S æ Rd at one particular time is di�cult and
costly, as it involves either geometric quantities, or the solution to a boundary value problem attached to
G(t).

The proposed numerical strategy for tracking the evolution of G(t) is summarized in Section 3.2.1.
The pivotal ingredients involved in its implementation are fairly classical when the ambient medium is
the 2d or 3d space, but much less so when it is a surface S in R3. Hence, we present them in this context
with somedetails in the next Sections 3.2.2 to 3.2.4.

3.2.1 Outline of the numerical algorithm
The time interval (0, T ) is split into a series of subintervals of the form (tn, tn+1), n = 0, . . . , N ≠ 1, where
tn = n�t and �t is a “small” time step; we indicate with a superscript n the value of a time-dependent
object at tn: for instance, Gn stands for G(tn), V n(·) denotes the velocity field V (tn, ·), etc.

The proposed algorithm for tracking the motion of G(t) is based on two complementary representations
of each intermediate configuration Gn:

• A level set representation. On the one hand, Gn is known as the negative subset of a level set
function „n : S æ R, i.e. (3.4) holds. In practice, „n is supplied at the vertices of a triangular mesh
of S, see Fig. 3.2 (a).

• A meshed representation. On the other hand, Gn is meshed exactly. More precisely, a triangular
mesh T

n of S is available, with the following properties:

(i) T
n is valid: the intersection between any two di�erent open triangles Ti, Tj œ T

n is empty;
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a b

Figure 3.2: (a) Level set function „ : S æ R for a region G µ S defined at the vertices of the triangulation
of a surface S µ R3 ; (b) High-quality mesh T of S, enclosing a submesh Tint of G (in dark blue).

(ii) T
n is conforming: the intersection Ti fl Tj between the closures of any two di�erent triangles

Ti, Tj œ T
n is either a vertex or an edge of T

n;
(iii) T

n has high quality: the triangles T œ T
n are close to being equilateral;

(iv) T
n is made of two submeshes T

n

int, T
n

ext – that is, collections of subsets of its triangles –
associated to the respective regions Gn and S \ Gn.

The requirements (i-iii) are ubiquitous in the scientific computing literature, notably when it comes
to guaranteeing the accuracy of finite element computations on S [92]; they are illustrated on
Fig. 3.3. The property (iv) is more specific to our meshed representation, see Fig. 3.2 (b).

The meshed representation of Gn is particularly useful when it comes to calculating some of its
geometric features (e.g. the normal vector field n�n to �n, its curvature, etc.), or to solve related
“physical” boundary value problems – operations which are involved in the definition of the velocity field
V n

ˆ�(x) or its normal component vn

ˆ�(x). In turn, the level set representation „n allows for a robust
description of the motion of G(t) between the times tn and tn+1 via the solution of the advection equation
(3.5) with velocity field V n, or that of the Hamilton-Jacobi equation (3.7) with normal velocity vn.
E�cient numerical algorithms make it possible to switch between these representations so that every
operation involving Gn can be carried out within the most appropriate framework.

Our numerical algorithm for the simulation of the motion of G(t) proceeds as follows, see Algorithm 2
for a summarizing sketch. Every iteration n = 0, . . . starts with the datum of the region Gn under meshed
representation: a valid, conforming and high-quality mesh T

n of S is available, a submesh T
n

int of which
is an explicit mesh for the region Gn. By performing geometric or mechanical calculations related to Gn

on this mesh, the velocity field V n : S æ Rd is calculated at the vertices of T
n. A particular level set

representation „n : S æ R for Gn is then calculated at the vertices of T
n, as the signed distance function

dGn to Gn. The evolution of G(t) between times tn and tn+1 is carried out by solving the evolution
equation (3.5) over the time period (tn, tn+1) with the velocity field V n and the initial datum „n. This
yields a level set representation „n+1 : S æ R for Gn+1, at the vertices of the mesh T

n. Finally, a meshed
representation for Gn+1 is obtained from these data, with the help of suitable remeshing algorithms; this
produces a new high-quality mesh T

n+1 of S is produced, a submesh T
n+1

int that explicitly discretizes
Gn+1.

The main stages of this method are described in more detail in the next sections: in Section 3.2.2,
we discuss the numerical computation of the signed distance function to a subregion G of a surface S,
which allows to pass from a meshed description of G to a level set description. In Section 3.2.3, we
describe the numerical solution of the level set advection equation (3.5) on the surface S, accounting
for the update of G(t) between successive iterations. Finally, in Section 3.2.4, we outline the remeshing
operations involved in the construction of a meshed representation of a region G µ S from a level set
representation „ : S æ R.

3.2.2 Computation of the signed distance function on a surface

Let T be a triangulation of a surface S µ Rd, and let Tint denote a submesh for a region G µ S; we wish
to generate a level set function „ : S æ R for G at the vertices of T , i.e. a function „ satisfying (3.4).

81



CHAPTER 3. BODY-FITTED TRACKING WITHIN A SURFACE VIA A LEVEL SET BASED
MESH EVOLUTION METHOD

a

<latexit sha1_base64="l97ua+wBX/vHUbewoBz8kCA5eXo=">AAAB7nicdVDJSgNBEK2JW4xb1KOXwSB4ChOJyzHgxWMEs0AyhJ5OTdKkp2forhHCkI/w4kERr36PN//GziLE7UHB470qquoFiRSGPO/Dya2srq1v5DcLW9s7u3vF/YOmiVPNscFjGet2wAxKobBBgiS2E40sCiS2gtH11G/dozYiVnc0TtCP2ECJUHBGVmp1g1RKpF6xVCl7M7jeL/JllWCBeq/43u3HPI1QEZfMmE7FS8jPmCbBJU4K3dRgwviIDbBjqWIRGj+bnTtxT6zSd8NY21LkztTliYxFxoyjwHZGjIbmpzcV//I6KYVXfiZUkhIqPl8UptKl2J3+7vaFRk5ybAnjWthbXT5kmnGyCRWWQ/ifNM/KlYvy+W21VKsu4sjDERzDKVTgEmpwA3VoAIcRPMATPDuJ8+i8OK/z1pyzmDmEb3DePgF4m4+h</latexit>•

b

c d

Figure 3.3: (a) Invalid two-dimensional triangulation, presenting overlapping triangles (in red); (b) Valid,
yet non conforming mesh (the red node lies strictly inside an edge); (c) Valid, conforming, but ill-shaped
mesh (the red triangles are nearly degenerate); (d) High-quality computational mesh.

Algorithm 2: Body-fitted tracking of the evolution of a region G(t) µ S.
Input: Mesh T

0 of S featuring an explicit discretization of the initial region G0.
for n = 0, . . . , N ≠ 1 do

1. Compute the velocity field V n

ˆ�(x) at the vertices x of T
n with the help of the meshes T

n

int, T
n

ext of
Gn and S \ Gn, respectively.

2. Compute the signed distance function dGn to Gn at the vertices of the mesh T
n of S.

3. Solve the advection equation
;

ˆ„

ˆt
(t, x) + V n

ˆ�(x) · ÒS„(t, x) = 0 for (t, x) œ (0, �t) ◊ S,
„(0, x) = dGn(x) for x œ S,

on the total mesh T
n of S. A new level set function „n+1 = „(�t, ·) is obtained for

Gn+1 =
)

x œ S, „n+1(x) < 0
*

.

4. From the datum of „n+1 at the vertices of T
n, create a new, high-quality mesh T

n+1 of S made of
two submeshes T

n+1
int and T

n+1
ext for Gn+1 and S \ Gn+1, respectively.

end
Output: Mesh T

N of S featuring an explicit discretization T
N

int of GN .
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Although many choices are possible, stability issues in the numerical practice of the level set method
raise the need to select one which presents “neither too steep, nor too flat” variations, see e.g. [87]. To
comply with this requirement, and due to its desirable properties in connection with the geometry of G
(see e.g. [116]), we calculate the signed distance function dG to G, defined by

’x œ S, dG(x) =

Y
]

[

≠dS(x, �) if x œ G,
0 if x œ �,

dS(x, �) if x œ S \ G,
(3.8)

where the distance dS(x, �) = inf
pœ�

dS(x, p) from a point x œ S to � is defined from the geodesic distance

’x, y œ S, dS(x, y) = inf
;⁄ 1

0
|“Õ(u)| du, “ œ C

1([0, 1], S), “(0) = x, “(1) = y

<
.

Multiple numerical algorithms allow to calculate the signed distance function to a subdomain of R2 or
R3: the fast marching method [291], the fast sweeping method [349], among others. Much fewer allow to
deal with the case where the ambient medium is a surface of Rd equipped with a surface triangulation, as
is our concern in the present work; in our implementation, we rely on the non trivial extension of the fast
marching algorithm proposed in [205].

3.2.3 Resolution of the level set advection equation on the surface S

In this section, we discuss the numerical realization of the evolution of G(t) over a generic time period
(0, Tg) (which stands for any of the intervals (tn, tn+1) featured in Algorithm 2) according to a stationary
tangential vector field V (x) (accounting for V n

ˆ�(x)), or normal velocity v(x), starting from an initial
datum „0 (representing „n). We consider the solution of the level set evolution equation under advection
form: I ˆ„

ˆt
(t, x) + V (x) · ÒS„(t, x) = 0, for t œ (0, Tg), x œ S,

„(0, x) = „0(x), for x œ S,
(3.9)

or that of its Hamilton-Jacobi counterpart:
I ˆ„

ˆt
(t, x) + v(x) |ÒS„(t, x)| = 0, for t œ (0, Tg), x œ S,

„(0, x) = „0(x), for x œ S.
(3.10)

This topic is quite classical in the literature when the ambient medium is the Euclidean space R2 or
R3. E�cient numerical schemes are available if the latter is discretized with a Cartesian grid, see notably
[296, 302, 198] about (weighted) Essentially Non Oscillatory finite di�erence methods, and [348] for a
survey. In the case when the computational support is a simplicial mesh, we refer to [1, 47, 131, 255] for
adapted numerical schemes for the Hamilton-Jacobi equation (3.10), and more recently to [36, 120] about
discontinuous Galerkin methods for the advection equation (3.9).

By contrast, the resolution of (3.9) or (3.10) has been seldom considered in the present context where
the ambient medium is a surface S in R3. The aforementioned articles [53, 169, 230, 278, 281], which
are based on a level set or closest point description of S, rely on the construction of reformulations of
the equations (3.9) or (3.10) on the whole ambient space R3. In [132], a finite element method on a
triangulation of S is proposed for the conservative counterpart of the advection equation (3.9).

In our implementation, following [66], we solve the advection equation (3.9) thanks to the method of
characteristics [264], a procedure which can be understood as a semi-Lagrangian scheme for the original
evolution equation (3.5), see [309]. This method relies on the explicit expression of the solution to (3.9) in
terms of the characteristic curves t ‘æ ‰(t, t0, x) of the velocity field V . Like in Section 3.1, for t0 œ (0, Tg)
and x œ S, ‰(·, t0, x) is characterized by the following ordinary di�erential equation:

; d‰

dt
(t, t0, x) = V (t, ‰(t, t0, x)), for t œ (0, Tg),

‰(t0, t0, x) = x.
(3.11)

The solution to (3.9) then reads:

„(t, x) = „0(‰(0, t, x)), t œ [0, Tg], x œ S, (3.12)
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that is, the value of „ at time t and point x is the value taken by the initial function „0 at the position
initially occupied by the particle lying in x at time t.

We leverage this property by discretizing explicitly the formula (3.12). In our implementation, the
surface S is equipped with a triangulation T ; the velocity field V (x) and the initial datum „0 are Lagrange
P1 finite element functions on T : they are defined by their values at the vertices of T , and their evaluation
at other points on S is achieved by piecewise linear interpolation. For every vertex x of T , we solve the
ordinary di�erential equation (3.11) for the position ‰(0, Tg, x) thanks to a classical Euler scheme, or by
a more involved Runge-Kutta strategy. This task brings into play (yet another) subdivision of the time
interval (0, Tg); it relies on e�cient data structures for locating the neighbors of the triangles in the mesh
T , and some care is needed when realizing linear combinations of the various velocity vectors attached to
di�erent points x œ S, which belong to di�erent tangent planes. We refer to [245] for the implementation
of Runge-Kutta methods for the solution of ordinary di�erential equations on surfaces.

Remark 3.3. In practical situations, some of the characteristic lines u ‘æ ‰(u, Tg, x) may not be
defined over the whole interval [0, Tg]. This happens when S is open and V (x) · nS(x) < 0 at some
points x œ ˆS, where nS(x) œ TxS is the conormal vector to the surface S. Physically, the velocity
field enters the surface at such points, and the equation (3.9) has to be complemented with adequate
boundary conditions at such “entrant” regions of the boundary ˆS. When this situation occurs, we
simply linearly interpolate the values of V and „ outside the surface ˆS from their values on ˆS to
complete the integration of (3.11) with consistent values.

3.2.4 Meshing of the negative subdomain of a level set function
Let T be a triangulation of a surface S in R3, and let „ : S æ R be a level set function for a region
G µ S, which is supplied by its values at the vertices of T . We aim to construct a new, high-quality
computational mesh ÂT of S which comprises two submesh ÁTint and ÁText for the regions G and S \ G.
This operation can be achieved by various strategies, see e.g. [153, 154], and we adopt here that of our
previous work [102].

The latter proceeds in two steps:

1. The triangles T œ T crossing the 0 level set � = ˆG of „ are identified from the values of this
function at the vertices of T , and � is discretized explicitly into T . This pretty simple operation
is based on the so-called marching tetrahedra algorithm [127] – a variant of the famous marching
cubes method [226]: pre-defined patterns are used to split each triangle T œ T into a valid,
conforming configuration where the line segments � fl T appears explicitly. This step results in a
surface triangulation Ttemp of S featuring explicit submeshes Ttemp,int and Ttemp,ext of G and S \ G.
Unfortunately, Ttemp is ill-shaped: it inevitably features thin, nearly flat elements, which makes
it unsuitable for the practice of accurate geometric and finite element calculations, see again [92]
about this classical issue.

2. The intermediate mesh Ttemp is iteratively modified to improve the quality of its elements, i.e. to
make them close to equilateral, insofar as possible. A new, high-quality mesh ÂT of S is obtained,
which provides explicit discretizations of G and S \ G.

The latter step is by far the most complicated of the process, and it deserves a few comments. It
starts with a series of geometric computations, such as the normal vector n to S, the conormal vector n�
to � and the deviation of their values at neighboring vertices of T . This allows to identify the suitable
local size of the elements of the mesh ensuring an accurate approximation of S and G.

Then, guided by this information, four local remeshing operations are intertwined, provided they
improve the global quality of the mesh, see e.g. [152].

• Edge split. An edge pq in T which is “too long” is split by introducing a new point m and
reconnecting the triangles sharing pq as an edge accordingly, see Fig. 3.5 (a).

• Edge collapse. The endpoints of an edge pq which is “too short” are merged, see Fig. 3.5 (b).

• Edge swap. The edge pq between two adjacent triangle pqr and pqs is suppressed and the alternate
configuration, featuring the edge rs and the triangles rsp and rsq, is retained, see Fig. 3.5 (c).

• Vertex relocation. A vertex p of T is slightly moved on the continuous surface, see Fig. 3.5 (d).
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a b c

Figure 3.4: (a) Values of a level set function „ : S æ R for a region G µ S; (b) Ill-shaped mesh Ttemp
obtained after explicit discretization of G into T ; (c) High-quality mesh ÂT obtained after remeshing
Ttemp.

Importantly, this remeshing stage leaves room for an adaptation of the computational mesh T with
respect to geometric quantities of S or G, or to a priori or a posteriori error estimates attached to the
resolution of partial di�erential equations on surfaces.

Remark 3.4. In some applications, such as those of Chapter 4, it happens that the considered
surface S is the boundary ˆ� of a three-dimensional domain � equipped with a tetrahedral mesh
K, and that the considered surface triangulation T is the boundary part of K. In such a situation,
the above operations can be applied to the whole tetrahedral mesh K, producing a new mesh ÂK of �,
whose surface part ÂT is a triangulation of ˆ� enclosing submeshes ÂTint and ÂText of G and S \ G,
respectively.
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<latexit sha1_base64="yr2yuXv6inEk/ityTYqyWFDMY9Y=">AAAB63icbVDLSsNAFL2pr1pfVZduBotQNyERX8uCG5cV7APaUCbTSTt0ZhJmJkIJ/QU3LhRx6w+582+ctFlo64ELh3Pu5d57woQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxySdaT80G15rneHGiV+AWpQYHmoPrVH8YkFVQawrHWPd9LTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6DjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Eh+Msvr5L2hetfu1cPl7WGW8RRhhM4hTr4cAMNuIcmtIDAGJ7hFd4c4bw4787HorXkFDPH8AfO5w9pq43H</latexit>

n(p)

<latexit sha1_base64="M/HrPZR4ZERL2v7ngce5eMre2nk=">AAAB63icbVDLSsNAFL3xWeur6tLNYBHqJiTia1lw47KCfUAbymQ6aYfOTOLMRCihv+DGhSJu/SF3/o2TNgttPXDhcM693HtPmHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vs399hNVmsXywUwSGgg8lCxiBJtckrXHs36l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWuetfuZf3F9W6W8RRgmM4gRr4cA11uIMGNIHACJ7hFd4c4bw4787HvHXFKWaO4A+czx9rMI3I</latexit>

n(q)

<latexit sha1_base64="H8myLkzoNETOjz7IPMNkhV2SB10=">AAAB63icbVDLSsNAFL2pr1pfVZduBotQNyERX8uCG5cV7APaUCbTSTt0ZhJmJkIJ/QU3LhRx6w+582+ctFlo64ELh3Pu5d57woQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxySdbV+aBa81xvDrRK/ILUoEBzUP3qD2OSCioN4Vjrnu8lJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjqdgQ/OWXV0n7wvWv3auHy1rDLeIowwmcQh18uIEG3EMTWkBgDM/wCm+OcF6cd+dj0Vpyiplj+APn8wdstY3J</latexit>

n(r)

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="yWiF0TaPsZikRVmrGMJO8CRmT4o=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8LbuJRr0FvHiMYB6QLGF20psMmZ1dZmaFEPIRXjwo4tXv8ebfOHkIUbSgoajqprsrTAXXxvM+nZXVtfWNzdxWfntnd2+/cHDY0EmmGNZZIhLVCqlGwSXWDTcCW6lCGocCm+HwZuo3H1Bpnsh7M0oxiGlf8ogzaqzU7ISZEGi6haLvejMQb4mUS+XKNfm2irBArVv46PQSlsUoDRNU67bvpSYYU2U4EzjJdzKNKWVD2se2pZLGqIPx7NwJObVKj0SJsiUNmanLE2Maaz2KQ9sZUzPQv72p+JfXzkx0FYy5TDODks0XRZkgJiHT30mPK2RGjCyhTHF7K2EDqigzNqH8cgj/k0bJ9Svuxd15seou4sjBMZzAGfhwCVW4hRrUgcEQHuEZXpzUeXJenbd564qzmDmCH3DevwCXLI+y</latexit>•
<latexit sha1_base64="l67j8P3XiV1P3pwg3r0K4PS/3AA=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmNGvUW8OIxAfOAZAmzk9lkzMzsMjMrhCVf4MWDIl79JG/+jZOHEEULGoqqbrq7woQzbTzv08mtrK6tb+Q3C1vbO7t7xf2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqtx6o0iyWd2ac0EDggWQRI9hYqS56xZLvejMgb4mclc8q1+jbKsECtV7xo9uPSSqoNIRjrTu+l5ggw8owwumk0E01TTAZ4QHtWCqxoDrIZodO0IlV+iiKlS1p0Exdnsiw0HosQtspsBnq395U/MvrpCa6CjImk9RQSeaLopQjE6Pp16jPFCWGjy3BRDF7KyJDrDAxNpvCcgj/k2bZ9SvuRf28VHUXceThCI7hFHy4hCrcQg0aQIDCIzzDi3PvPDmvztu8NecsZg7hB5z3L/SojP8=</latexit>m

a

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•
<latexit sha1_base64="7JtGreiBllbyb4k/it0D6gC1/CY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF48JmAckS5id9CZjZmeXmVkhhHyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXmAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hobua3nlBpnsgHM04xiOlA8ogzaqxUT3vliud6c5BV4uekAjlqvfJXt5+wLEZpmKBad3wvNcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqLbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCP7yy6ukeeH61+5V/bJSdfM4inACp3AOPtxAFe6hBg1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD11WM6g==</latexit>p

<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>q

<latexit sha1_base64="35NOao54LO4HF5rmRaO4FLdAHt0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF48JmAckS5id9CZjZmeXmVkhhHyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXmAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hobua3nlBpnsgHM04xiOlA8ogzaqxUV71yxXO9Ocgq8XNSgRy1Xvmr209YFqM0TFCtO76XmmBCleFM4LTUzTSmlI3oADuWShqjDibzQ6fkzCp9EiXKljRkrv6emNBY63Ec2s6YmqFe9mbif14nM9FtMOEyzQxKtlgUZYKYhMy+Jn2ukBkxtoQyxe2thA2poszYbEo2BH/55VXSvHD9a/eqflmpunkcRTiBUzgHH26gCvdQgwYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB2l2M7A==</latexit>r

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="yWiF0TaPsZikRVmrGMJO8CRmT4o=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8LbuJRr0FvHiMYB6QLGF20psMmZ1dZmaFEPIRXjwo4tXv8ebfOHkIUbSgoajqprsrTAXXxvM+nZXVtfWNzdxWfntnd2+/cHDY0EmmGNZZIhLVCqlGwSXWDTcCW6lCGocCm+HwZuo3H1Bpnsh7M0oxiGlf8ogzaqzU7ISZEGi6haLvejMQb4mUS+XKNfm2irBArVv46PQSlsUoDRNU67bvpSYYU2U4EzjJdzKNKWVD2se2pZLGqIPx7NwJObVKj0SJsiUNmanLE2Maaz2KQ9sZUzPQv72p+JfXzkx0FYy5TDODks0XRZkgJiHT30mPK2RGjCyhTHF7K2EDqigzNqH8cgj/k0bJ9Svuxd15seou4sjBMZzAGfhwCVW4hRrUgcEQHuEZXpzUeXJenbd564qzmDmCH3DevwCXLI+y</latexit>•
<latexit sha1_base64="l67j8P3XiV1P3pwg3r0K4PS/3AA=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmNGvUW8OIxAfOAZAmzk9lkzMzsMjMrhCVf4MWDIl79JG/+jZOHEEULGoqqbrq7woQzbTzv08mtrK6tb+Q3C1vbO7t7xf2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqtx6o0iyWd2ac0EDggWQRI9hYqS56xZLvejMgb4mclc8q1+jbKsECtV7xo9uPSSqoNIRjrTu+l5ggw8owwumk0E01TTAZ4QHtWCqxoDrIZodO0IlV+iiKlS1p0Exdnsiw0HosQtspsBnq395U/MvrpCa6CjImk9RQSeaLopQjE6Pp16jPFCWGjy3BRDF7KyJDrDAxNpvCcgj/k2bZ9SvuRf28VHUXceThCI7hFHy4hCrcQg0aQIDCIzzDi3PvPDmvztu8NecsZg7hB5z3L/SojP8=</latexit>m

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>• <latexit sha1_base64="0I61xXp+p64mc5WUmFnVTb/me4I=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARPYUbcjgEvHiOYBZIh9HRqkiY9PUN3jRCGfIQXD4p49Xu8+TdOFiFuDwoe71VRVS9IlLTkuh/O0vLK6tp6YaO4ubW9s1va22/YODUC6yJWsWkF3KKSGuskSWErMcijQGEzGF5P/OY9GitjfUejBP2I97UMpeCUS81OkCqF1C2VvYo7BXN/kS+rDHPUuqX3Ti8WaYSahOLWtj03IT/jhqRQOC52UosJF0Pex3ZONY/Q+tn03DE7zpUeC2OTlyY2VRcnMh5ZO4qCvDPiNLA/vYn4l9dOKbzyM6mTlFCL2aIwVYxiNvmd9aRBQWqUEy6MzG9lYsANF5QnVFwM4X/SOK14F5Xz27NytTKPowCHcAQn4MElVOEGalAHAUN4gCd4dhLn0XlxXmetS8585gC+wXn7BHbNj5s=</latexit>•
<latexit sha1_base64="l8VTAi7WFUEKwaWUfDLQDkhy+ag=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GmbE7Rjw4jEBs0AyhJ5OTdKmp2fo7hHCkC/w4kERr36SN//GziK4Pih4vFdFVb0wFVwbz3t3CkvLK6trxfXSxubW9k55d6+pk0wxbLBEJKodUo2CS2wYbgS2U4U0DgW2wtHV1G/dodI8kTdmnGIQ04HkEWfUWKme9soV3/VmIN4v8mlVYIFar/zW7Scsi1EaJqjWHd9LTZBTZTgTOCl1M40pZSM6wI6lksaog3x26IQcWaVPokTZkobM1K8TOY21Hseh7YypGeqf3lT8y+tkJroMci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpvQ1hP9J88T1z92z+mml6i7iKMIBHMIx+HABVbiGGjSAAcI9PMKTc+s8OM/Oy7y14Cxm9uEbnNcP2NWM6w==</latexit>p

<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>q

b

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>q

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="JoKTVovGdNz6tktHk8/EtoX2Ggg=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1YqHxRJxCalUa3WcAanWyRIuSAWXM7AqoZWaw+L7YBSxJARpmKBa98skNl5KleFMwLwwSDTElE3pGPoWJQ1Be+li0Tk+s84IB5GyTxq8cL9PpDTUehb6tjOkZqJ/1zLzr1o/MUHdS7mMEwOSLT8KEoFNhLOr8YgrYEbMLFCmuN0VswlVlBmbTcGG8HUp/h86Fbdccy9b1VLDXcWRRyfoFJ2jMrpCDXSDmqiNGAL0gJ7Qs3PnPDovzuuyNeesZo7RDzlvnw1FjQ8=</latexit>p

<latexit sha1_base64="DRaTFQ9gXS3O+HwpXm+H/Cl84Jw=">AAAB6HicdZDLSgMxFIbPeK31VnXpJlgEV0Om1tplwY3LFuwF2qFk0rSNzWTGJCOUoU/gxoUibn0kd76NmbaCiv4Q+PjPOeScP4gF1wbjD2dldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6gREM8ElaxpuBOvEipEwEKwdTK6yevueKc0jeWOmMfNDMpJ8yCkx1mrc9QtF7GJcKleqKANcruIFnOMS8jKwKsJS9X7hvTeIaBIyaaggWnc9HBs/JcpwKtgs30s0iwmdkBHrWpQkZNpP54vO0Kl1BmgYKfukQXP3+0RKQq2nYWA7Q2LG+nctM/+qdRMzrPopl3FimKSLj4aJQCZC2dVowBWjRkwtEKq43RXRMVGEGptN3obwdSn6H1ol16u4F41yseYu48jBMZzAGXhwCTW4hjo0gQKDB3iCZ+fWeXRenNdF64qznDmCH3LePgEOyY0Q</latexit>q

<latexit sha1_base64="Cnqf1i8vZlyT9W/lU/GfzaVkSOo=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1VLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxBNjRE=</latexit>r
<latexit sha1_base64="Hkiy4KUWBO0pzoEM5Ub3TpSnyq0=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1dLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxHRjRI=</latexit>s

c

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="JoKTVovGdNz6tktHk8/EtoX2Ggg=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1YqHxRJxCalUa3WcAanWyRIuSAWXM7AqoZWaw+L7YBSxJARpmKBa98skNl5KleFMwLwwSDTElE3pGPoWJQ1Be+li0Tk+s84IB5GyTxq8cL9PpDTUehb6tjOkZqJ/1zLzr1o/MUHdS7mMEwOSLT8KEoFNhLOr8YgrYEbMLFCmuN0VswlVlBmbTcGG8HUp/h86Fbdccy9b1VLDXcWRRyfoFJ2jMrpCDXSDmqiNGAL0gJ7Qs3PnPDovzuuyNeesZo7RDzlvnw1FjQ8=</latexit>p

<latexit sha1_base64="DRaTFQ9gXS3O+HwpXm+H/Cl84Jw=">AAAB6HicdZDLSgMxFIbPeK31VnXpJlgEV0Om1tplwY3LFuwF2qFk0rSNzWTGJCOUoU/gxoUibn0kd76NmbaCiv4Q+PjPOeScP4gF1wbjD2dldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6gREM8ElaxpuBOvEipEwEKwdTK6yevueKc0jeWOmMfNDMpJ8yCkx1mrc9QtF7GJcKleqKANcruIFnOMS8jKwKsJS9X7hvTeIaBIyaaggWnc9HBs/JcpwKtgs30s0iwmdkBHrWpQkZNpP54vO0Kl1BmgYKfukQXP3+0RKQq2nYWA7Q2LG+nctM/+qdRMzrPopl3FimKSLj4aJQCZC2dVowBWjRkwtEKq43RXRMVGEGptN3obwdSn6H1ol16u4F41yseYu48jBMZzAGXhwCTW4hjo0gQKDB3iCZ+fWeXRenNdF64qznDmCH3LePgEOyY0Q</latexit>q

<latexit sha1_base64="Cnqf1i8vZlyT9W/lU/GfzaVkSOo=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1VLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxBNjRE=</latexit>r
<latexit sha1_base64="Hkiy4KUWBO0pzoEM5Ub3TpSnyq0=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1dLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxHRjRI=</latexit>s

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="2Wilt3oyPD2WMsBIA6drESGUSYU=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GmZckhwDXjwmYBZIhtDTqUna9PQM3T1CGPIFXjwo4tVP8ubfOFmEKPqg4PFeFVX1/FhwbRzn08qtrW9sbuW3Czu7e/sHxcOjlo4SxbDJIhGpjk81Ci6xabgR2IkV0tAX2PbHNzO//YBK80jemUmMXkiHkgecUZNJjbhfLLm2MwdxVshlpVwtk2+rBEvU+8WP3iBiSYjSMEG17rpObLyUKsOZwGmhl2iMKRvTIXYzKmmI2kvnh07JWaYMSBCprKQhc3V1IqWh1pPQzzpDakb6tzcT//K6iQmqXsplnBiUbLEoSAQxEZl9TQZcITNikhHKFM9uJWxEFWUmy6awGsL/pHVhu2X7unFVqtnLOPJwAqdwDi5UoAa3UIcmMEB4hGd4se6tJ+vVelu05qzlzDH8gPX+BQMrjQk=</latexit>p
<latexit sha1_base64="bw92AH9Hc4mCWcVjrVvdFYk2pUo=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBbBU0gU294sePFYwX5AG8pmu2mXbjZhdyKU0B/hxYMiXr37T7z5b0xThSr6YODx3gzzZvxYCoOO82EVVlbX1jeKm6Wt7Z3dvfL+QdtEiWa8xSIZ6a5PDZdC8RYKlLwba05DX/KOP7ma+507ro2I1C1OY+6FdKREIBjFTOr0/URKjoNyxbWdHMRZIue1ar1Kvq3K5dt5juag/N4fRiwJuUImqTE914nRS6lGwSSflfqJ4TFlEzrivYwqGnLjpXncGTnJlCEJIp2VQpKryxMpDY2Zhn7WGVIcm9/eXPzL6yUY1L1UqDhBrthiUZBIghGZ306GQnOGcpoRyrTIshI2ppoyzD5UWn7C/6R9ZrtV++LGqTRsWKAIR3AMp+BCDRpwDU1oAYMJ3MMjPFmx9WA9Wy+L1oL1NXMIP2C9fgKC3ZHZ</latexit>•

<latexit sha1_base64="ijHrEMoZOhR5b5Xa5h6c9m44Kts=">AAAB6HicbZDLSsNAFIYn9VbrrerSzWARXIWkau3OghuXLdoLtKFMpift2MkkzEyEEvoEblwo4tZX8E3c+TZOUwW1/jDw8/3nMOccP+ZMacf5sHJLyyura/n1wsbm1vZOcXevpaJEUmjSiEey4xMFnAloaqY5dGIJJPQ5tP3x5Sxv34FULBI3ehKDF5KhYAGjRBvUuO4XS47tZMKOXT6tlt0Kdr/JtyldvJ1kqveL771BRJMQhKacKNV1nVh7KZGaUQ7TQi9REBM6JkPoGitICMpLs0Gn+MiQAQ4iaZ7QOKM/O1ISKjUJfVMZEj1Sf7MZ/C/rJjqoeikTcaJB0PlHQcKxjvBsazxgEqjmE2MIlczMiumISEK1uU3BHGFh5UXTKttuxT5rOKWajebKowN0iI6Ri85RDV2hOmoiigDdo0f0ZN1aD9az9TIvzVlfPfvol6zXT6/fjwU=</latexit>

Sd
<latexit sha1_base64="ijHrEMoZOhR5b5Xa5h6c9m44Kts=">AAAB6HicbZDLSsNAFIYn9VbrrerSzWARXIWkau3OghuXLdoLtKFMpift2MkkzEyEEvoEblwo4tZX8E3c+TZOUwW1/jDw8/3nMOccP+ZMacf5sHJLyyura/n1wsbm1vZOcXevpaJEUmjSiEey4xMFnAloaqY5dGIJJPQ5tP3x5Sxv34FULBI3ehKDF5KhYAGjRBvUuO4XS47tZMKOXT6tlt0Kdr/JtyldvJ1kqveL771BRJMQhKacKNV1nVh7KZGaUQ7TQi9REBM6JkPoGitICMpLs0Gn+MiQAQ4iaZ7QOKM/O1ISKjUJfVMZEj1Sf7MZ/C/rJjqoeikTcaJB0PlHQcKxjvBsazxgEqjmE2MIlczMiumISEK1uU3BHGFh5UXTKttuxT5rOKWajebKowN0iI6Ri85RDV2hOmoiigDdo0f0ZN1aD9az9TIvzVlfPfvol6zXT6/fjwU=</latexit>

S

<latexit sha1_base64="O7jLHceuxI6bsyhXdhn3A5n02/o=">AAAB7nicdZDLSsNAFIZP6q3WW9Wlm8EiuAqJtZedBTcuK9gLtKFMppN26GQSZiZCCX0INy4UceveN3Hn2zhJFVT0h4GP/z+HOef4MWdKO867VVhZXVvfKG6WtrZ3dvfK+wddFSWS0A6JeCT7PlaUM0E7mmlO+7GkOPQ57fmzyyzv3VKpWCRu9DymXognggWMYG2s3tBPOKd6VK44tuM4580mysBtVKs51NxGHblZZFS5eK3mao/Kb8NxRJKQCk04VmrgOrH2Uiw1I5wuSsNE0RiTGZ7QgUGBQ6q8NB93gU6MM0ZBJM0TGuXu944Uh0rNQ99UhlhP1e8sM//KBokOml7KRJxoKsjyoyDhSEco2x2NmaRE87kBTCQzsyIyxRITbS5UMkf42hT9D90z263btWun0rJhqSIcwTGcggsNaMEVtKEDBGZwBw/waMXWvfVkPS9LC9ZnzyH8kPXyAaOLke8=</latexit>•
<latexit sha1_base64="aq2zIAETre2EclkwthJvvUEKQ6w=">AAAB6HicdVDLSgNBEOyNj8T4inr0MiiKp2XXmMcx4MVjAuYByRJmJ7PJmNnZZWZWCCFf4MWDIl79G6/e/AbBb3A2UVDRgoaiqpvuLj/mTGnHebUyS8srq9ncWn59Y3Nru7Cz21JRIgltkohHsuNjRTkTtKmZ5rQTS4pDn9O2Pz5P/fY1lYpF4lJPYuqFeChYwAjWRmrE/cKhYzuOc1atopS4lWJxTkpupYzc1DI4rGXf3+LjzHO9X3jpDSKShFRowrFSXdeJtTfFUjPC6SzfSxSNMRnjIe0aKnBIlTedHzpDR0YZoCCSpoRGc/X7xBSHSk1C33SGWI/Uby8V//K6iQ6q3pSJONFUkMWiIOFIRyj9Gg2YpETziSGYSGZuRWSEJSbaZJM3IXx9iv4nrVPbLdulhknDhgVysA8HcAIuVKAGF1CHJhCgcAN3cG9dWbfWg/W4aM1YnzN78APW0wfZhJCc</latexit>p

Figure 3.5: Illustration of the four operations involved in the remeshing strategy of Section 3.2.4; (a) Split
of the “long” edge pq into two edges pm and mp, where the new point m is introduced on S; (b) Collapse
of the “short” edge pq; (c) Swap of the edge pq between the triangles pqr and pqs for the alternate
configuration, featuring the edge rs and the triangles rsp and rsq; (d) Relocation of the vertex p which
slides along S.
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3.3. NUMERICAL FRAMEWORK

3.3 Numerical framework
In this section, we present numerical examples illustrating the main features of the proposed evolution
Algorithm 2. After a short description of our practical implementation in Section 3.1, the first example in
Section 3.4 deals with a simple situation meant to appraise its accuracy, that of a region G(t) on the unit
sphere S2 in R3 evolving according to its conormal vector field. In Section 3.5 we turn to the numerical
simulation of the physical evolution of a fire front, which is driven by the geometric features of the front
and those of the underlying landscape S.

As presented in Section 3.2, the numerical implementation of the examples proposed in the subsequent
sections relies on a surface triangulation T of the ambient surface S µ Rd, which is modified between the
consecutive steps n = 0, . . . of the evolution process. Typically, various scalar and vector fields are defined
and handled on S, such as level set functions „ : S æ R for regions G µ S or velocity fields V : S æ Rd.
They are discretized as Lagrange P1 finite element functions on T , i.e. they are continuous, and their
restriction to each triangle T œ T is a�ne. As such, these quantities are characterized by their values
at the vertices of T and their evaluation at other points x œ S is realized by linear interpolation from
these data. The numerical experiments discussed in the next Sections 3.4 and 3.5 are executed on a
regular laptop Apple MacBookPro 18,3 (M1 Pro chip) with 10 cores and 16 GB of memory. The code
implementation has been carried out using the Rodin library, discussed in detail in Chapter 5.

3.4 Motion in the direction of the conormal vector field
This first example aims to evaluate the e�ciency of our numerical Algorithm 2 in the context of a simple
motion where an analytical solution is available. The ambient surface S is the unit sphere S2

µ R3; it is
equipped with the spherical coordinates (–, —) centered at the origin 0, which induce the following (non
injective) parametrization:

‡ : [0, 2fi] ◊ [0, fi] æ S2

(–, —) ‘æ (cos – sin —, sin – sin —, cos —).

In this setting, we wish to track the region G(t) µ S evolving from the upper spherical cap Ca with
azimuth angle a œ (0, fi

2 ),
G(0) = Ca := ‡([0, 2fi] ◊ [0, a)),

according to the conormal vector field to the interface �(t) = ˆG(t):

’t œ (0, T ), x œ �(t), V (t, x) = n�(t)(x),

over the time period (0, T ), with T = fi

2 ≠ a, see Fig. 3.6. Note that V (t, x) can be conveniently extended
to the whole surface S as:

V (t, x) = ÒSdG(t)(x), for a.e. x œ S, (3.13)

where dG(t) is the signed distance function (3.8) to G(t), see e.g. [116] about this property and Remark 3.1.

As we have mentioned, in this simple setting, all the features attached to the evolution of G(t) can be
expressed analytically. Indeed, for t œ (0, T ), the deformed domain G(t) is the upper spherical cap with
azimuth angle a + t:

G(t) = Ca+t = ‡
1

[0, 2fi] ◊ [0, a + t)
2

. (3.14)

In particular, since T = fi

2 ≠ a, the final region G(T ) coincides with the upper half-sphere. Besides, the
geodesic signed distance function dG(t) to G(t) has the following analytical expression:

’(–, —) œ [0, 2fi] ◊ [0, fi], dCa(t)(‡(–, —)) = — ≠ t ≠ a. (3.15)

Finally, let us observe that, in this very specific case where the normal component of the velocity field
V (t, x) identically equals 1, the exact solution „(t, x) to the evolution equation (3.5) when initialized with
the signed distance function „(0, ·) = dG(0) = dCa is given by:

„(t, x) = dCa(t)(x), (3.16)

in particular, „(t, ·) is the signed distance function to G(t) for all t > 0.
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n�(y)

Figure 3.6: Setting of the motion of a region G(t) within the unit sphere S2 along the conormal vector
field n�(t) considered in Section 3.4

In our numerical simulation of the motion of G(t) by means of Algorithm 2, the time interval (0, T ) is
discretized into N subintervals of the form (tn, tn+1), where 0 Æ n Æ N ≠ 1, tn = n�t, and �t is a “small”
time step. In order to appraise the convergence of our strategy, we measure the least-square di�erence
E between the numerical level set function „N for the tracked region GN (that is, the outcome of the
calculation of the signed distance function dGN with the help of the final mesh T

N of S) at the final
iteration N , and the exact value „(T, ·) of the solution to (3.9), given by (3.15) and (3.16):

E :=
3⁄

S

--„N (x) ≠ „(T, x)
--2 ds(x)

41/2
; (3.17)

thus, E measures the potential accumulation of errors incurred by the various stages of Algorithm 2
throughout the iterations n = 0, . . ., namely the inexact calculation of the signed distance function to the
regions Gn, the error in the numerical resolution of the advection equation (3.9) between consecutive
times tn and tn+1 and the approximation of the geometry of Gn caused by its explicit discretization into
the mesh T

n.
We wish to study the behavior of the error E in the limit where the time step �t vanishes and the

mesh is refined, i.e. the average size h of the edges of the mesh tends to 0. Since a fully explicit procedure
is used for approximating the solution to (3.5) by that of a series of linear evolution equations, featuring
a frozen in time velocity field (see Section 3.1), we anticipate that it is relevant to relate these two
parameters as �t = ch, where the parameterc plays the role of a CFL number, accounting for the number
of mesh elements crossed by the interface �(t) during a single time step.

Several numerical simulations of the motion of G(t) are performed, associated with di�erent values of
c and h; a few iterations of the evolution process in one of these instances are depicted on Fig. 3.7, and
the behavior of the error E in the various considered situations is shown in Fig. 3.8. As expected, for a
fixed, “not too small” value of the ratio c, E tends to 0 as the mesh is refined (i.e. as h tends to 0). On
the contrary, this convergence is not observed when c is “small”, which can be attributed to the large
accumulation of numerical errors during the various stages of Algorithm 2 when the algorithm has to
perform a “too large” number of iterations with respect to the limited precision guaranteed by a fixed
mesh size. The results of Fig. 3.8 suggest to select a value of c within the range ( 1

3 , 1), so that at least 1
3

element is crossed at each iteration of the process. Note that identical (unreported) experiments taking
place in the context of a planar ambient surface S show similar trends as regards the behavior of our
strategy with respect to the values of c and h.
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3.4. MOTION IN THE DIRECTION OF THE CONORMAL VECTOR FIELD

a b c

Figure 3.7: Evolution G(t) of the spherical cap Ca under unit conormal velocity considered in Section 3.4;
(a) Initial configuration G(0) = Ca; (b) Intermediate configuration G(t)at time t = fi/4; (c) Final region
G(T ) corresponding to the upper half-sphere.

Figure 3.8: History of the least-square error E in (3.17) for di�erent values of the mesh size h and “CFL
number” c in the conormal advection example of Section 3.4.
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3.5 Wildland fire propagation
With the increasing global warming and the intensification of human activity, among other factors,
wildfires have emerged as a significant concern in recent decades, and much endeavour has been made
towards understanding, and ultimately predicting, their dynamics. The obvious limitations of practical
experiments raise the need to develop accurate models and e�cient numerical simulation algorithms,
see e.g. [42, 44, 233, 290, 28, 273] and [243]. In this section, we show how the strategy of Section 3.2.1
for tracking the evolution of a region G(t) within a surface S µ R3 is a valuable tool in the numerical
realization of a model for the simulation of such a phenomenon, which is driven by the geometric
characteristics of the evolving front and of the landscape surface. We rely on the physical model of [41],
which has been validated in e.g. [44, 145, 146] and is used in softwares such as ForeFire [145]. For the
convenience of the reader, we provide a short, intuitive presentation of this model, referring to [41] for
the details.

The ambient surface S µ R3 represents the topography of the landscape. It is defined as the graph
of a function over a domain in the 2d horizontal plane, or, equivalently, in terms of the height function
s : S æ R:

’x = (x1, x2, x3) œ S, s(x1, x2, x3) = x3.

The ground slope vector p is the unit tangential vector field pointing in the direction of the largest
variation of altitude:

’x œ S, p(x) = ÒSs(x)
|ÒSs(x)| ,

and the local slope of the land is the angle between this vector and the tangential directions:

– : S æ

Ë
≠

fi

2 ,
fi

2

È
, – = arcsin(p · e3),

see Fig. 3.9. The evolving subdomain G(t) µ S and its boundary �(t) = ˆG(t) represent the burnt region
and the fire front, respectively, while the complement S\G(t) stands for the vegetal stratum, i.e., the
part of the land covered with vegetation that has not yet been ignited. The motion of �(t) is oriented
along its conormal vector field:

’t œ (0, T ), x œ �(t), V (t, x) = R(t, x)n�(t)(x), (3.18)

where the scalar component R(t, x) > 0 is the rate of spread of the front.
The quantity R(t, x) depends on the geometric features of the landscape S, the fire front �(t), and on

the physical characteristics of the actual situation. These data, whose values are determined through
measurements are the following:

• The rate of spread R0 > 0 of the burnt region in the absence of slope and wind (expressed in ms≠1);

• The velocity u0 of the combustion gas in the absence of slope (in ms≠1);

• The (dimensionless) ratio A > 0 between the incident radiant energy and the ignition energy of the
(wet) vegetal fuel;

• The velocity of the wind U : S æ Rd (in ms≠1).

The behavior of the rate of spread R(t, x) at some point x in the fire front �(t) depends on whether
the flame is directed towards the burnt region or the vegetal stratum. This feature is measured by the
so-called tilt angle “(t, ·) : �(t) æ R, whose values depend on the velocity of the wind U(x), on the local
slope –(x), and on the vector n�(t)(x) via the following relation:

’x œ �(t), tan “(t, x) = tan –(x) cos —p(t, x) + |U(x)|
u0

cos —U (t, x), (3.19)

where —p(t, x) is the angle between the ground slope vector p(x) and n�(t)(x), and —U (t, x) is the angle
between the wind U(x) and n�(t)(x). Roughly speaking, at some point x œ �(t), the flame is tilted
towards the burnt region if “(t, x) Æ 0 and towards the vegetal stratum if “(t, x) Ø 0, see Fig. 3.10. The
rate of spread R(t, x) then takes “small” values in the former situation, and large values in the latter one;
its definition of R(t, x) brings into play the following two regimes:
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Figure 3.9: Illustration of the evolution of a fire on a topography. The slope vector p indicates the
direction of greatest ascent as visualized by the arrows pointing towards the peaks. The burning region
G is indicated by the yellow-red zone whose motion is prescribed by the arrows representing V .

a b

Figure 3.10: Illustration of the geometric relations involved in the computation of the rate of spread R at
the level of one triangle T œ T , in the fire propagation model of Section 3.5.

• Case 1 (Slow backing fire spread) “(t, x) Æ 0. The flame axis at x is tilted towards the burnt region
and R(t, x) = R0.

• Case 2 (Fast fire spread) “ > 0. The flame axis at x is tilted towards the unburnt vegetation, thus
accelerating the ignition of the latter and the expansion of the front; R(t, x) is given by:

R(t, x) = 0.5
A

Ra(t, x) +
3

Ra(t, x)2 + 48R2
0

cos “(t, x)

4 1
2
B

, where

Ra(t, x) = R0 + 12AR0
1 + sin “(t, x) ≠ cos “(t, x)

cos “(t, x) ≠ 12R0
1

cos “(t, x) . (3.20)

We conduct three experiments of the evolution of a burning region within a landscape S with complex
topography, associated to as many di�erent scenarios. The surfaces S used in these examples are
fictitious: they are generated as graphs of random non negative functions defined over the horizontal
base [0, 50] ◊ [0, 50] – where the retained unit for spatial coordinates is the km; see Fig. 3.11 (a,c) for an
illustration. For simplicity, we assume that a homogeneous vegetal stratum covers the entire terrain, so
that the physical parameters R0, u0 and A are constant; their values are taken from [41] and are reported
in Table 3.1. We also report in there the common values of the numerical parameters used in all three
situations.

The use of Algorithm 2 in this context is straightforward: at each iteration n = 0, . . ., corresponding
to the time tn = n�t, the computation of the velocity field V n = V (tn, ·) in (3.18) and (3.20) depends
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Parameter R0 u0 A �t hmax
Value 2.7 ms≠1 39.8 ms≠1 1.25 600 s 400 m

Table 3.1: Values of the parameters used in the experiments concerning the propagation of a fire front in
Section 3.5.

on that of geometric quantities attached to S and Gn, that is conveniently realized with the help of the
mesh T

n of S, where Gn is explicitly discretized. Note that, in keeping with Remark 3.1, in this example
again, the velocity field V (t, x) can be extended to the whole surface S by leveraging the same extension
formula (3.13) for the conormal vector field n�(t) as in the previous Section 3.4.

The landscape S considered in our first experiment is represented in Fig. 3.11 (b,d), and the initially
burnt region G(0) is a surface disk with radius 1 km, centered at the point x = (x1, x2, x3) œ S with
coordinates (x1, x2) = (19.5, 19.5). In this situation, the e�ect of the wind is neglected, i.e. U © 0. We
simulate the evolution of G(t) thanks to Algorithm 2 over the time period [0, T ], where T = 400 mn,
using the parameters reported in Table 3.1. A few intermediate meshes T

n obtained in the course of the
evolution are displayed in Fig. 3.12. In this experiment, the values of the rate of spread R(t, x) range
between 0.4 and 27.35 ms≠1, with an average value of 2.26 ms≠1. The values presented here align with
findings in [41] as well as in other studies like [312, 83], which also provide data on the mean, minimum,
and maximum rates of spread. As expected from the formulas in (3.20), the fire spreads rapidly towards
regions where the flame is tilted towards the unburnt region (typically in mountains).

From the technical vantage, let us point out that, at each iteration of the process, the complex
landscape surface S and burnt region Gn are equipped with exact, high-quality meshes, which are refined
in the vicinity of their sharp features. This allows for accurate calculations of quantities such as the
conormal vector n�(t) to the fire front as opposed to “classical” simulation methods and implementations in
the fire dynamics literature, that use marker methods on Cartesian grids and projections or reconstructions
of the fire front, see [147, 146, 145, 28].

a b

c

d

Figure 3.11: Landscape surface S used in the first experiment of Section 3.5; the initially burnt region
G(0), visualized in (b) and (d), is represented in red, and the color scale in (a) and (c) accounts for the
height function s. The lower left corner of S is set to (0, 0, 0) œ R3.
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(a) t = 0 min (b) t = 100 min

(c) t = 200 min (d) t = 400 min

Figure 3.12: Snapshots of the first experiment of propagation of a fire front conducted in Section 3.5.

We next turn to the study of a second scenario, aimed to appraise the behavior of our method in
dealing with regions with multiple connected components. The landscape S is the same as that used
in the first experiment, see again Fig. 3.11 (b,d); the initial region G(0) is the reunion of four disjoint
surface disks with radius 1 km, centered at the points of S whose whose horizontal coordinates equal
(12.5, 12.5), (12.5, 37.5), (37.5, 12.5), (37.5, 37.5), respectively. Still, wind is omitted.

The evolution of G(t) is tracked until the final time T = 500 mn. A few snapshots of the evolution
process are depicted on Fig. 3.13. In the course of the evolution, the four initially burnt regions expand
and eventually merge – the description of such complex topological changes being considerable eased by
the use of our mesh evolution Algorithm 2, which takes advantage of the level set method to deal with
the update of the moving region.

We finally turn to a third experiment, where the motion of the burning region G(t) is influenced by
the presence of a rotating wind. The landscape S is represented on Fig. 3.14 (a), and the wind velocity
U : S æ Rd accounts for a rotation around the center of the landscape:

’x œ S, U(x1, x2, x3) = (x2 ≠ 25, ≠(x1 ≠ 25), 0).

A few snapshots of the simulation of the evolution of G(t) are presented in Fig. 3.14; here the final
time is T = 160 mn. Notably, the algorithm successfully accounts for the rotational characteristics of the
wind vector field and e�ectively managed the merging of burning regions resulting from such complex
motions. Understandably enough, the burning region tends to expand more rapidly when the fire is tilted
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(a) t = 100 min (b) t = 200 min

(c) t = 400 min (d) t = 500 min

Figure 3.13: Snapshots of the second experiment of propagation of a fire front conducted in Section 3.5.

towards the unburnt vegetation and the latter is located in the general direction of the wind. Moreover,
the motion exhibits a faster rate of spread R(t, x) compared to that in the previous experiments, which
is, again, caused by the wind. Again, the algorithm successfully manages to account for the merging of
the various components of the burnt region.

Let us conclude this section with two general comments. Firstly, the meshes T
n involved in each

of the above three experiments contain on average about 240,000 triangles, and each iteration of our
algorithm takes approximately 25 seconds, which suggests that our implementation proves quite e�cient
at simulating fire propagation in real time. Secondly, as far as the sensitivity of the simulation with
respect to the choice of the parameters h and �t is concerned, the same trends as in Section 3.4 are
observed: unreported numerical tests indicate that the general aspect of the burnt region does not depend
very much on the choice of these parameters, as long as the time step �t is of the order of the mesh size
h.
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(a) t = 20 min (b) t = 40 min

(c) t = 80 min
(d) t = 160 min

Figure 3.14: Snapshots of the third experiment of propagation of a fire front conducted in Section 3.5.
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Chapter 4

Shape and topology optimization of
the regions supporting boundary con-
ditions

The looming concerns caused by the scarcity of material resources and the blatant need to realize
energy savings have made shape and topology optimization techniques just as topical as ever within
the academic and industrial communities, where they find applications in fields so diverse as structural
mechanics [52, 298], civil engineering and architecture [3, 48], fluid mechanics [6, 58], electromagnetism
[158, 196, 218, 251], and biomedical engineering [191, 270, 351].

In the classical instances of such problems, the design under scrutiny is a “bulk” domain � in Rd

(d = 2, 3), which is optimized with respect to a performance criterion J(�), under constraints about
e.g. its volume or perimeter. In applications, J(�) usually depends on a physical “state” function u,
characterized as the solution to a partial di�erential equation posed on �. Most often, the regions of ˆ�
supporting specific boundary conditions attached to the latter are imposed by the context, and are not
subject to optimization.

The present chapter investigates optimal design problems where the variable is precisely one of those
regions of ˆ� supporting a particular type of boundary conditions in the formulation of the physical
problem at play. Among the various instances of such questions, let us mention the following:

• In electrostatics, � represents a conductor, and the voltage potential u : � æ R within is the
solution to the conductivity equation. It is grounded on a subset �D of ˆ� and a flux g : �N æ R
is imposed on a disjoint region �N µ ˆ�: these e�ects are modeled by a homogeneous Dirichlet
condition on �D and an inhomogeneous Neumann condition on �N . The remaining part � of ˆ�,
which is insulated from the outside, is subject to a homogeneous Neumann boundary condition.
Although �D and �N are usually fixed, one may wish to minimize the amplitude of the electric
field in � with respect to their placement on ˆ�.

• In acoustics, u : � æ R is the sound pressure within a room �, solution to the Helmholtz equation.
The boundary ˆ� is decomposed into two regions �N and �R: Neumann boundary conditions
are imposed on �N , where an incoming wave undergoes perfect reflection, while �R bears Robin
boundary conditions, accounting for a partial absorption of the latter. One may then wonder how
to arrange �N and �R within ˆ� to minimize the sound pressure in �.

• In structural mechanics, � is a mechanical piece, attached on a subset �D of its boundary ˆ�, and
submitted to surface loads g : �N æ Rd, applied on a disjoint region �N µ ˆ�; the vector field
u : � æ Rd, representing the displacement of the structure, is the solution to the linear elasticity
system. Usually, �D and �N are given by the context, and only the remaining, traction-free
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boundary � is optimized. However, it may be relevant to optimize the placement of the fixation
region �D, to minimize the displacement of the structure.

These questions fit in the general shape optimization framework of a subset G of a fixed ambient
surface S µ Rd. Early studies in this context are devoted to the simulation of geometric flows within S,
notably the mean curvature flow. In [230], this task is investigated thanks to the level set method, in a
situation where S is equipped with a triangular mesh of S; it is also considered in in [84], where S itself
is defined in an implicit way. The perhaps most natural instance of a physical optimal design problem
posed on a surface S µ Rd certainly concerns the optimal reinforcement of a shell structure: S then plays
the role of the midsurface, in which the optimized region G is that made of a sti�er material. Popular
numerical strategies feature a fixed mesh of S which serves as the support of density-based topology
optimization techniques [260, 318]. The level set method is also employed in such setting in [317], and it
is coupled with a geometric optimization procedure for the midsurface S itself in [189]. On a di�erent
note, the work [338] combines the level set method with a conformal mapping strategy, reducing the
surface S, and thereby the whole shape optimization problem, to a more classical planar situation.

In spite of their natural character and ubiquity in concrete applications, optimization problems of
regions supporting the boundary conditions of a physical problem have been relatively seldom considered
in the literature. Without anticipating too much on the more complete overviews of related contributions
in the particular applications provided in Sections 4.7, 4.11, 4.13 and 4.14, let us solely mention that
density-based topology optimization methods are prevailing in this context also, see e.g. [74, 228] in
the context of the optimal design of a fixture system. The practice of the level set method on a fixed
mesh of a computational domain is also observed in [333, 332] for the concurrent optimization of the
shape and the Dirichlet region of a mechanical structure in 2D; see also [345] for similar ideas. Closer to
the framework of the present chapter, the contribution [119] leverages the level set method on a fixed
mesh of a box-shaped room � to optimize the distribution of sound-soft and sound-hard materials on the
boundary of the latter.

The problematic of optimizing regions supporting boundary conditions raises challenging issues from
various perspectives. From the theoretical viewpoint, the realization of this task goes through the
calculation of the derivative of such a function J(G). This information is indeed the basic ingredient
of the optimality conditions of the optimization problem. It is also the main ingredient of iterative
optimization algorithms, starting from the simple, unconstrained gradient descent method to more
advanced constrained optimization algorithms, such as those proposed in [130, 143, 313]. Interestingly,
these derivatives can also be used to make the optimization problem “robust” with respect to small
perturbations of the geometry of G, as in e.g. [10, 11, 235]. From the numerical viewpoint, optimal design
problems of regions supporting boundary conditions raise in particular the need to track the possibly
dramatic evolution of a region within an ambient surface – a task which is already notoriously di�cult
when the ambient medium is (a bounded domain of) the Euclidean space Rd.

The present chapter is the natural continuation of the works [56, 63, 108]. The article [108] deals with
the shape sensitivity of a function J(G) depending on a region G of the boundary of a domain � bearing
the boundary conditions of a state problem, in the spirit of the method of Hadamard: the derivative of
J(G) with respect to “small”, di�eomorphic perturbations of G is considered. The situation where G is
the support of Dirichlet conditions and the complement ˆ� \ G is equipped with Neumann conditions is of
particular interest in that work; indeed, the weakly singular behavior of the state function u in that case
makes the treatment of shape derivatives particularly di�cult – a fact which was previously acknowledged
in [151]. To alleviate this issue, an approximation of the state problem is proposed, which lends itself
to simpler calculation and numerical treatment, see Section 4.2.3 below for a brief presentation. This
material paves the way to a numerical algorithm for the shape optimization of the region G. The article
[56] deals with singular perturbations of G, at the theoretical level: asymptotic formulas are derived for
the solution u to the conductivity equation in the case where homogeneous Neumann boundary conditions
are replaced by homogeneous Dirichlet equations (and vice-versa) in a “vanishing” zone ÊÁ µ ˆ�. A
preliminary application of these results to the device of a notion of topological derivative for functions
J(G) depending on regions G bearing boundary conditions was described in Chapter 3. The latter stands
at the numerical level; elaborating on the ideas of [14], it introduces a body-fitted mesh evolution method
to track dramatic motions of a region within a fixed ambient surface, which e�ciently combines the level
set method with remeshing algorithms. Note that this algorithm was used in the very recent work [234]
with the purpose to optimize Neumann eigenvalues on the unit 3D sphere.

In the present chapter, we leverage these ingredients to propose a general shape and topology
optimization workflow for a region G µ ˆ� supporting the boundary conditions attached to a partial
di�erential equation posed on the fixed ambient domain �. Our strategy combines (adapted versions of)
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the notions of shape and topological derivatives to appraise the sensitivity of a function J(G) with respect
to small, di�eomorphic perturbations of ˆG and to singular perturbations, via the addition of a small
surfacic disk ÊÁ, respectively. From the theoretical vantage, one of our contributions is to provide formal
calculation methods for both types of derivatives. These are detailed within a simple setting based on the
conductivity equation, and they can be adapted to treat novel situations. More precisely, our calculation
method for the shape derivative of J(G) allows readily to treat a whole gammut of problems in the more
intricate contexts of acoustics and structural mechanics. The calculation of a topological derivative for
such a function J(G) is slightly more subtle, and we focus on the description of the needed adaptations
of our methods to achieve this purpose. Interestingly, this chapter illustrates two di�erent forays of
asymptotic analysis in the realm of shape and topology optimization: on the one hand, these concepts are
used to smooth a singular transition between two zones bearing di�erent boundary conditions, leading
to a simplified calculation of shape derivatives. On the other hand, it allows to investigate singular
perturbations of a smooth background problem, via the introduction of a “small” zone where boundary
conditions are altered.

4.1 Mathematical framework
Let � be a smooth bounded domain in Rd (d = 2, 3). We consider a model shape and topology optimization
problem of the form:

min
Gµˆ�

J(G), (P)

where J is an objective function of a region G µ ˆ�. The treatment of the problem (P) relies on
the sensitivity of the function J(G) with respect to “small” variations of G. We will introduce two
complementary means to appraise di�erentiation with respect to a boundary region:

• In Section 4.2, we adapt the classical boundary variation method of Hadamard to the context
of a boundary region G. This paves the way to a notion of shape derivative, accounting for the
sensitivity of J(G) with respect to small perturbations of the boundary of G.

• In Section 4.3, we define a suitable version of the concept of topological derivative, which appraises
the sensitivity of J(G) with respect to the addition of a “small” surfacic disk to G.

In essence, these approaches extend the concepts of shape and topological derivatives to address
optimization involving the regions regions bearing boundary conditions of a physical problem. , which
are essential tools in shape analysis.

4.2 Computation of shape derivatives with respect to variations
in the support of boundary conditions

In this section, we precise the mathematical framework of our adopted notion of shape derivatives.
Throughout, we assume that � µ Rd is a smooth, fixed domain with boundary ˆ�. We assume that the
boundary contains a regular region G bearing a certain type of boundary conditions in the formulation of
a physical problem of interest. We denote � := ˆG.

4.2.1 Hadamard’s boundary variation method on a domain contained within
a surface

We consider the problem of computing the shape derivative of the criterion J(G) featured in the problem
(P). Similar to the previous works, we rely on an adapted version of the classical Hadamard’s boundary
variation method, involved in the notion of shape derivative of a function depending on a domain in Rd;
see e.g. [22, 116, 185, 247, 301]. We consider variations of the region G in the form:

G◊ := (Id + ◊)(G), where ◊ œ W 1,Œ(Rd, Rd), ||◊||W 1,Œ(Rd,Rd) < 1, (4.1)

as illustrated in Fig. 4.1. Furthermore, we consider the set �Î of tangential vector fields to ˆ�, i.e.

�Î := {◊ œ W 1,Œ(Rd, Rd), ||◊||W 1,Œ(Rd,Rd) < 1 | ◊ · nˆ� = 0}. (4.2)

This leads to the following definition of shape di�erentiability for a function J of the bounded region
G.

98



4.2. COMPUTATION OF SHAPE DERIVATIVES WITH RESPECT TO VARIATIONS IN THE
SUPPORT OF BOUNDARY CONDITIONS

<latexit sha1_base64="ZSk7HEFCT+HUALnwXhwNldhm020=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIqS4LbtxZwT6gCeVmOmmHTiZhZiLU0C9x40IRt36KO//GSZuFth64cDjn3pl7T5BwprTjfFuljc2t7Z3ybmVv/+Cwah8dd1WcSkI7JOax7AegKGeCdjTTnPYTSSEKOO0F05vc7z1SqVgsHvQsoX4EY8FCRkAbaWhXvQSkZsCxdxfRMQztmlN3FsDrxC1IDRVoD+0vbxSTNKJCEw5KDVwn0X6WP0o4nVe8VNEEyBTGdGCogIgqP1ssPsfnRhnhMJamhMYL9fdEBpFSsygwnRHoiVr1cvE/b5Dq8NrPmEhSTQVZfhSmHOsY5yngEZOUaD4zBIhkZldMJiCBaJNVxYTgrp68TrqXdbdZb943aq1GEUcZnaIzdIFcdIVa6Ba1UQcRlKJn9IrerCfrxXq3PpatJauYOUF/YH3+AHGUkuw=</latexit>

��

<latexit sha1_base64="uRaSOI5UyKeg536Ft6wNp20kLiY=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoMQL2E3hJhjwIvHCOYhyRJmJ7PJkJnZZaZXDEu+wosHRbz6Od78GycvUGNBQ1HVTXdXEAtuwHW/nMzG5tb2TnY3t7d/cHiUPz5pmSjRlDVpJCLdCYhhgivWBA6CdWLNiAwEawfj65nffmDa8EjdwSRmviRDxUNOCVjpvgcjBqT4eNnPF9ySOwd2S+VKrexVsbdSVqSAlmj085+9QUQTyRRQQYzpem4Mfko0cCrYNNdLDIsJHZMh61qqiGTGT+cHT/GFVQY4jLQtBXiu/pxIiTRmIgPbKQmMzF9vJv7ndRMIa37KVZwAU3SxKEwEhgjPvscDrhkFMbGEUM3trZiOiCYUbEY5G8Lay+ukVS551VL1tlKoV5ZxZNEZOkdF5KErVEc3qIGaiCKJntALenW08+y8Oe+L1oyznDlFv+B8fANtuJAk</latexit>

�(x)

<latexit sha1_base64="oVrqE/x6xUFADfQm5FSutFJlZ50=">AAAB73icbVDJSgNBEO2JW4xb1KOXxiB4GmZCiDkGPOgxglkgGUJPpyZp0rPYXSOEIT/hxYMiXv0db/6NnQ3U+KDg8V4VVfX8RAqNjvNl5TY2t7Z38ruFvf2Dw6Pi8UlLx6ni0OSxjFXHZxqkiKCJAiV0EgUs9CW0/fH1zG8/gtIiju5xkoAXsmEkAsEZGqlz0+/hCJD1iyXHduagjl2u1MpulborZUVKZIlGv/jZG8Q8DSFCLpnWXddJ0MuYQsElTAu9VEPC+JgNoWtoxELQXja/d0ovjDKgQaxMRUjn6s+JjIVaT0LfdIYMR/qvNxP/87opBjUvE1GSIkR8sShIJcWYzp6nA6GAo5wYwrgS5lbKR0wxjiaigglh7eV10irbbtWu3lVK9coyjjw5I+fkkrjkitTJLWmQJuFEkifyQl6tB+vZerPeF605azlzSn7B+vgGD8eP9w==</latexit>

G�

<latexit sha1_base64="Y+lLcFZNEUMcPDc29pvX7brWeNI=">AAAB7XicdVDJSgNBEK2JW4xb1KOXxiB4CjMSoseAF48RzQLJEHo6PUmbXobuHiEM+QcvHhTx6v9482/sLELcHhQ83quiql6UcGas7394uZXVtfWN/GZha3tnd6+4f9A0KtWENojiSrcjbChnkjYss5y2E02xiDhtRaPLqd+6p9owJW/tOKGhwAPJYkawdVKze8MGAveKpaDsz4D8X+TLKsEC9V7xvdtXJBVUWsKxMZ3AT2yYYW0Z4XRS6KaGJpiM8IB2HJVYUBNms2sn6MQpfRQr7UpaNFOXJzIsjBmLyHUKbIfmpzcV//I6qY0vwozJJLVUkvmiOOXIKjR9HfWZpsTysSOYaOZuRWSINSbWBVRYDuF/0jwrB9Vy9bpSqlUWceThCI7hFAI4hxpcQR0aQOAOHuAJnj3lPXov3uu8NectZg7hG7y3T2w7jwE=</latexit>

�

<latexit sha1_base64="rfhHh7DN++tOMgDvPS0/Vox18jE=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4CjMi0WPAgx4TMAskQ+jp1CRtenqG7h4hDPkCLx4U8eonefNv7CxC3B4UPN6roqpekAiujet+OLmV1bX1jfxmYWt7Z3evuH/Q1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoauq37lFpHstbM07Qj+hA8pAzaqxUv+4VS17ZnYG4v8iXVYIFar3ie7cfszRCaZigWnc8NzF+RpXhTOCk0E01JpSN6AA7lkoaofaz2aETcmKVPgljZUsaMlOXJzIaaT2OAtsZUTPUP72p+JfXSU146WdcJqlByeaLwlQQE5Pp16TPFTIjxpZQpri9lbAhVZQZm01hOYT/SfOs7FXKlfp5qXq+iCMPR3AMp+DBBVThBmrQAAYID/AEz86d8+i8OK/z1pyzmDmEb3DePgGc0YzJ</latexit>

G

<latexit sha1_base64="5iLde3IqKdJX0OgwgtWY2weUbNc=">AAAB6HicdVDJSgNBEK1xjXGLevTSGARPYSaGLLeAF48JmAWSIfR0KkmbnoXuHjEM+QIvHhTx6id582/sSSKo6IOCx3tVVNXzIsGVtu0Pa219Y3NrO7OT3d3bPzjMHR23VRhLhi0WilB2PapQ8ABbmmuB3Ugi9T2BHW96lfqdO5SKh8GNnkXo+nQc8BFnVBupeT/I5e2CbTt2rUJSclmtVVPiOOVSkThGSZGHFRqD3Ht/GLLYx0AzQZXqOXak3YRKzZnAebYfK4wom9Ix9gwNqI/KTRaHzsm5UYZkFEpTgSYL9ftEQn2lZr5nOn2qJ+q3l4p/eb1Yj6puwoMo1hiw5aJRLIgOSfo1GXKJTIuZIZRJbm4lbEIlZdpkkzUhfH1K/iftYsEpF8rNUr5eWsWRgVM4gwtwoAJ1uIYGtIABwgM8wbN1az1aL9brsnXNWs2cwA9Yb5861I00</latexit>x <latexit sha1_base64="IbJ8vXxrHwowj1VqMtxY8SSH1Jo=">AAAB7nicdVDJSgNBEO2JW4xb1KOXxiB4CjMxZLkFvHiMYBZIhtDTqUma9Cx01whhyEd48aCIV7/Hm39jTxJBRR8UPN6roqqeF0uh0bY/rNzG5tb2Tn63sLd/cHhUPD7p6ihRHDo8kpHqe0yDFCF0UKCEfqyABZ6Enje7zvzePSgtovAO5zG4AZuEwhecoZF6Qy+REnBULNll23bsZp1m5KrRbGTEcWrVCnWMkqFE1miPiu/DccSTAELkkmk9cOwY3ZQpFFzCojBMNMSMz9gEBoaGLADtpstzF/TCKGPqR8pUiHSpfp9IWaD1PPBMZ8Bwqn97mfiXN0jQb7ipCOMEIeSrRX4iKUY0+52OhQKOcm4I40qYWymfMsU4moQKJoSvT+n/pFspO7Vy7bZaalXXceTJGTknl8QhddIiN6RNOoSTGXkgT+TZiq1H68V6XbXmrPXMKfkB6+0TzJ2P3A==</latexit>•

<latexit sha1_base64="u/z0pmHenPIBM/Am+72XAecvuKY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69BIvgKSQi1WPBi8cW7Ae0oWy2k3btZhN2N0II/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekHCmtOt+W6WNza3tnfJuZW//4PCoenzSUXEqKbZpzGPZC4hCzgS2NdMce4lEEgUcu8H0bu53n1AqFosHnSXoR2QsWMgo0UZqZcNqzXXcBex14hWkBgWaw+rXYBTTNEKhKSdK9T030X5OpGaU46wySBUmhE7JGPuGChKh8vPFoTP7wigjO4ylKaHthfp7IieRUlkUmM6I6Ila9ebif14/1eGtnzORpBoFXS4KU27r2J5/bY+YRKp5ZgihkplbbTohklBtsqmYELzVl9dJ58rx6k69dV1rOEUcZTiDc7gED26gAffQhDZQQHiGV3izHq0X6936WLaWrGLmFP7A+vwB5UuM9A==</latexit>y

<latexit sha1_base64="YbApm4uJd2r0qw1h/rgw4P6/VNE=">AAAB8nicdVDJSgNBEK2JW4xb1KOXxiDEyzARiR4DXjxGNAtMhtDT6Uma9HQP3T3CMOQzvHhQxKtf482/sbMIcXtQ8Hiviqp6YcKZNp734RRWVtfWN4qbpa3tnd298v5BW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaSccX039zj1VmklxZ7KEBjEeChYxgo2VfNHv3bJhjKvZab9cqbneDMj7Rb6sCizQ7JffewNJ0pgKQzjW2q95iQlyrAwjnE5KvVTTBJMxHlLfUoFjqoN8dvIEnVhlgCKpbAmDZuryRI5jrbM4tJ0xNiP905uKf3l+aqLLIGciSQ0VZL4oSjkyEk3/RwOmKDE8swQTxeytiIywwsTYlErLIfxP2mdure7Wb84rDXcRRxGO4BiqUIMLaMA1NKEFBCQ8wBM8O8Z5dF6c13lrwVnMHMI3OG+fm4OQxA==</latexit>

n�(y)

<latexit sha1_base64="IbJ8vXxrHwowj1VqMtxY8SSH1Jo=">AAAB7nicdVDJSgNBEO2JW4xb1KOXxiB4CjMxZLkFvHiMYBZIhtDTqUma9Cx01whhyEd48aCIV7/Hm39jTxJBRR8UPN6roqqeF0uh0bY/rNzG5tb2Tn63sLd/cHhUPD7p6ihRHDo8kpHqe0yDFCF0UKCEfqyABZ6Enje7zvzePSgtovAO5zG4AZuEwhecoZF6Qy+REnBULNll23bsZp1m5KrRbGTEcWrVCnWMkqFE1miPiu/DccSTAELkkmk9cOwY3ZQpFFzCojBMNMSMz9gEBoaGLADtpstzF/TCKGPqR8pUiHSpfp9IWaD1PPBMZ8Bwqn97mfiXN0jQb7ipCOMEIeSrRX4iKUY0+52OhQKOcm4I40qYWymfMsU4moQKJoSvT+n/pFspO7Vy7bZaalXXceTJGTknl8QhddIiN6RNOoSTGXkgT+TZiq1H68V6XbXmrPXMKfkB6+0TzJ2P3A==</latexit>•

<latexit sha1_base64="g40vuROsoEwW+5RbBNDpwKohWQA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoiUj0WvHisYD+gDWWz3bRLdzdhdyOE0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBTFn2rjut1Pa2Nza3invVvb2Dw6PqscnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2V3u956o0iySjyaNqS/wRLKQEWxySdbTy1G15jbcBdA68QpSgwLtUfVrOI5IIqg0hGOtB54bGz/DyjDC6bwyTDSNMZnhCR1YKrGg2s8Wt87RhVXGKIyULWnQQv09kWGhdSoC2ymwmepVLxf/8waJCW/9jMk4MVSS5aIw4chEKH8cjZmixPDUEkwUs7ciMsUKE2PjqdgQvNWX10n3quE1G82H61qrUcRRhjM4hzp4cAMtuIc2dIDAFJ7hFd4c4bw4787HsrXkFDOn8AfO5w93qo3R</latexit>

n(y)

<latexit sha1_base64="S3XHCFrZd8QJHyut5fmUCL5zQ8s=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiQircuCG3dWaGuhCWEynbRDZyZhZiKEUH/FjQtF3Poh7vwbJ20W2nrgwuGce2fuPWHCqNKO821VNja3tnequ7W9/YPDI/v4ZKDiVGLSxzGL5TBEijAqSF9TzcgwkQTxkJGHcHZT+A+PRCoai57OEuJzNBE0ohhpIwV2vRdk0EuQ1BQx6N1xMkGB3XCazgJwnbglaYAS3cD+8sYxTjkRGjOk1Mh1Eu3nxaOYkXnNSxVJEJ6hCRkZKhAnys8Xy8/huVHGMIqlKaHhQv09kSOuVMZD08mRnqpVrxD/80apjq79nIok1UTg5UdRyqCOYZEEHFNJsGaZIQhLanaFeIokwtrkVTMhuKsnr5PBZdNtNVv3V41Ou4yjCk7BGbgALmiDDrgFXdAHGGTgGbyCN+vJerHerY9la8UqZ+rgD6zPHxQHlGM=</latexit>

Ty��

Figure 4.1: Optimization of the region G of the boundary ˆ� of a shape by the method of Hadamard.

Definition 4.1. The criterion J(G) is shape di�erentiable at G µ ˆ� if the underlying mapping
◊ ‘æ J(G◊), from W 1,Œ(Rd, Rd) into R is Fréchet di�erentiable at ◊ = 0 and ◊ · nˆ� = 0. The shape
derivative of J Õ(G)(◊) is the Fréchet derivative and the following expansion holds:

J(G◊) = J(G) + J Õ(G)(◊) + o(◊), where o(◊)
||◊||W 1,Œ(Rd,Rd)

◊æ0
≠≠≠æ 0. (4.3)

Remark 4.1. When the considered variations G◊ of the region G µ ˆ� in (4.1) are defined from
tangential vector fields ◊ œ �Î, they account for a sliding displacement of G so that the ambient
surface ˆ� remains unaltered. Note that this operation does not exactly leave ˆ� invariant. This
behavior is only observed at “first order” in terms of ◊; the definition of the variation G◊ like in
Chapter 2 or a definition of the variation involving the flow of the tangential vector field ◊ would
enforce strictly this property, as in the so-called velocity method discussed in [301]. For simplicity,
and since both approaches yield the same notion of first-order derivative of a function J(G), we
ignore this technicality in the following.

Remark 4.2. On a di�erent note, variations (4.1) of a region G µ ˆ� can be defined from non
tangential vector fields ◊ (i.e. ◊ · nˆ� ”= 0), resulting in an additional “normal” motion of the surface
ˆ� itself. This allows to optimize jointly the shape of the ambient boundary ˆ� and that of the region
G, as in the previous work [108]. In practice, as we shall see, one can compute the shape derivative
J Õ(G)(◊), introduced in Definition 4.1 is a particular case of the classical shape derivative J Õ(�)(◊),
defined in Definition 1.1. The precise statement justifying this fact is stated in Lemma 2.5, where
choosing a vector field on Rd tangent everywhere to ˆ� yields the non-dependence on the normal
part.

Similar to the classical results (see Section 1.2), under mild assumptions, the shape derivative J Õ(G)(◊)
of a function J(G) of the region G µ ˆ� turns out to be of the form

J Õ(G)(◊) =
⁄

ˆG

fG ◊ · nˆG ds, (4.4)

where nˆG denotes the outward pointing unit normal on ˆG and the scalar field fG : ˆG æ R depends
on the region G and the considered objective function J(G). Depending on the nature of the latter, the
expression of fG may involve the solution to one or several boundary value problems attached to ˆ�
and G, see for instance (4.4) below. The structure (4.4) readily yields a descent direction for J(G) as
◊ = ≠fGnˆG. Indeed, we have:

J Õ(G)(◊) = ≠

⁄

ˆG

f2
G

ds < 0.
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Hence, substituting into the definition of shape derivative we have:

J(Gt◊) = J(G) ≠ tJ Õ(G)(◊) + o(t) < J(G),

for small t > 0. Introducing a pseudo-time t, one considers the evolution G(t) of the region starting from
an initial guess G0

µ ˆ�, under the e�ect of the velocity field

V (t, x) = ≠fG(t)nˆG(t),

where fG is defined in (4.4). This resulting sequence of regions G(t) smoothly decreases the value of the
criterion J(G) until a (local) minimizer of (P) is attained.

The Hadamard method, which relies on variations of a region G in the form of (4.1), does not permit
all types of topological changes: separate parts of the boundary ˆG of the optimized region G may collide
and merge, but no hole can emerge inside another part of the ambient surface ˆ�. Since the problem
(P) has multiple local minimizers, the optimization process is very sensitive to the initial design. In
Section 4.3, we will see how the topological sensitivity can be used to aleviate this issue.

Before moving on to the next sections, let us mention that the perhaps most simple examples of
functionals depending on a boundary region J(G) are the area Area(G) and contour Cont(G) of G, which
are respectively defined by:

Area(G) =
⁄

G

ds, and Cont(G) =
⁄

ˆG

d‡. (4.5)

The next proposition provides the shape derivatives of these quantities, in a slightly more general context.

Proposition 4.1. Let G be smooth region of the boundary ˆ�. Then,

(i) For any smooth function f : Rd
æ R, the functional J(G) defined by:

J(G) :=
⁄

G

f ds

is shape di�erentiable; its shape derivative reads, for any tangential deformation ◊:

J Õ(G)(◊) =
⁄

ˆG

f◊ · nˆG d‡.

(ii) For any smooth function g : Rd
æ R, the functional K(G) defined by:

K(G) :=
⁄

ˆG

g ds

is shape di�erentiable; its shape derivative reads, for any tangential deformation ◊:

K Õ(G)(◊) =
⁄

ˆG

(Òˆ�g · nˆG + Ÿg)◊ · nˆG d‡,

where Ÿ := Òˆ� · (nˆG) is the mean curvature of ˆG.

4.2.2 Smoothed interfaces for weakly-singular problems
Beyond the classical issues associated to the computation of shape derivatives, there is in particular one
problematic that often appears when optimizing the criterion in (P). Consider the case where, � supports
homogeneous Neumann conditions, G supports homogeneous Dirichlet conditions, and uG is solution to
the boundary value problem: Y

___]

___[

≠�uG = f in �,

uG = 0 on G,

ˆuG

ˆnˆ�
= 0 on �.

(4.6)

An application of the classical Lax-Milgram theorem yields that the solution uG is in H1(�). Furthermore,
given that the boundary is smooth, the classical elliptic regularity theory ensures that uG has H2 regularity
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except near the transition zone � := G fl �. In this zone, where the boundary condition changes type,
uG fails to enjoy H2 regularity. Furthermore, an extensive mathematical theory exists in the literature,
devoted to the precise study of the weakly singular behavior of uG in these regions. For a comprehensive
treatment, we refer the interested reader to the monographs [110, 172, 213]. In this context, we say that
the solution uG is called weakly singular, meaning it belongs to H1(�) but not H2(�). This poses a
problem when computing the shape derivative of J(G). For instance, using the formal Céa’s method (see
[22, 78] for an overview), which relies on the smoothness of uG, results in an erroneous expression of the
shape derivative in this context. Even if one were to avoid using a formal method like Céa’s method, it
would still be necessary to characterize the precise singular behavior of the solution uG at the transition
zones, as done in [108]. However, even with a successful characterization of the singular behavior, there
is no guarantee that the final expression would be readily usable from a numerical perspective. For a
detailed discussion of the additional drawbacks associated with the weakly singular behavior, we refer the
reader to [108].

To circumvent the issues articulated by the weakly singular behavior of uG, we consider trading the
exact solution uG for an approximate regular solution uG,Á in the definition of J(G). In a nutshell, the
“sharp” transition between the boundary conditions on G and � is replaced by a “smoothed” version over
a thin tubular neighborhood of �. In this manner, the exact optimization problem is replaced (P) by its
regularized counterpart:

min
Gµˆ�

JÁ(G) =
⁄

�
j(uG,Á) dx,

where j : R æ R, and uG,Á is solution to the boundary value problem:

Y
]

[

≠�uG,Á = f in �,

ˆuG,Á

ˆnˆ�
+ hG,ÁuG,Á = 0 on � fi G.

(4.7)

In this formulation, the coe�cient hG,Á : ˆ� æ R is defined by:

’x œ ˆ�, hG,Á(x) = 1
Á

h

3
dˆ�

G
(x)

Á

4
,

where dˆ�
G

denotes the signed distance function to G on ˆ� (see Definition 2.5), and h œ CŒ(R) satisfies:

0 Æ h Æ 1, h © 1 on (≠Œ, ≠1), h(0) > 0, h © 0 on [1, Œ). (4.8)

Additionally, the weak formulation for the solution uG,Á œ H1(�) to (4.7) is:

’v œ H1(�),
⁄

�
ÒuG,Á · Òv dx +

⁄

�fiG

hG,Á uG,Áv ds =
⁄

�
fv ds

In contrast to uG, for a fixed value of Á > 0, the solution uG,Á enjoys H2 regularity in a neighborhood of
�, due to the smoothness of � and hÁ. This is a consequence of the standard regularity theory for elliptic
equations [62]. The regularized function uG,Á and the regularized criterion JÁ(G) are valid approximations
by the following result, proved in [108].

Theorem 4.1. Suppose that the boundary of ˆ� around �. The function uG,Á converges to uG

strongly in H1(�), and the following estimate holds:

||uG,Á ≠ uG||H1(�) Æ CsÁs
||f ||L2(�),

for any 0 < s < 1
4 , where the constant Cs depends on s.

One can then calculate the shape derivative of the regularized criterion. The details of the proof of this
calculation can be found in §4.4 of [108]. The result is presented in the following proposition.
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Proposition 4.2. The functional JÁ(G) is shape di�erentiable at G, and its shape derivative reads:

J Õ

Á
(G)(◊) = ≠

1
Á2

⁄

�fiG

hÕ

3
dˆ�

G

Á

4
◊(fi�(x)) · n�(fi�(x)) uG,Á(x) pG,Á(x) ds(x). (4.9)

where fi�(x) denotes the projection of x onto � (see for instance Definition 2.6, and where pG,Á œ

H1(�) is the solution to the adjoint problem:
;

≠Ò · (“ÒpG,Á) = ≠jÕ(uG,Á) in �,

“ ˆpG,Á

ˆnˆ�
+ hÁpG,Á = 0 on G fi �.

(4.10)

Similarly to uG,Á, we have the following result for JÁ(G). Again, see §4.4 of [108] for the hypotheses and
proof.

Theorem 4.2. The approximate (classical) shape derivative J Õ
Á
(�) converges to its exact counterpart

J Õ(�) in the sense that:
sup

◊œ�Î
|J Õ

Á
(�)(◊) ≠ J Õ(�)(◊)| = 0.

Remark 4.3. In general, the regularization approach demonstrated in this section can be easily
adapted to di�erent contexts, such as the linearized elasticity system and the Helmholtz equation. In
Sections 4.11 to 4.14, we will use this approach to regularize the transition zones that exhibit weakly
singular behavior.

4.2.3 Approximate formulas for the numerical implementation of the regu-
larized shape derivative

While the mathematical formulation of the derivative (4.9) is satisfactory from a theoretical point of view,
its numerical evaluation poses certain challenges. First, one must calculate the projection fi�(y) onto �
for each point y œ � fi G. Secondly, (4.9) does not conform to the structure of (4.4), preventing the direct
identification of a descent direction and the use of advanced optimization algorithms such as the one
introduced in [130]. Fortunately, these challenges can be addressed by making some hypotheses to derive
approximate formulas, thereby simplifying their numerical computation.

Remark 4.4. The derivation relies on certain principles of Riemannian geometry, including concepts
like the pullback of the Riemannian metric and the use of Jacobi fields, some of which are discussed
in Chapter 2. While a simpler derivation could be achieved by employing an alternative version of
the change of variables theorem (Theorem 2.5), we choose to present this approach as it precisely
defines the nature of the approximations.

Theorem 4.3 (Coarea formula on Riemannian manifolds). Suppose (M, g) is a Riemannian
manifold, and „ : M æ R is a smooth function with no critical points. Then for any measurable
function f : M æ R we have

⁄

M

f(x)dVg =
⁄

R

A⁄

„≠1(t)

f(x)
|ÒM „(x)| dVÿúg

B
dt,

where ÿú
t
g denotes the induced metric on the level surface „≠1(t) µ M , i.e. the pullback of the metric

g by the inclusion map ÿt : „≠1(t) æ M .

Proof. A more general statement of this proposition can be found in the textbook [80], or the seminar
notes [250].

⌅

Since the derivative hÕ has compact support inside [≠1, 1], the integrand of the formula (4.9) has
compact support inside the tubular neighborhood UÁ =

)
x œ ˆ� s.t. dˆ�(x, �) < Á

*
. Recall that in this
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tubular neighborhood, |Òˆ�dˆ�
G

| = 1. An application of Theorem 4.3 yields:

J Õ

Á
(G)(◊) = ≠

1
Á2

⁄

UÁ

hÕ

3
dˆ�

G
(y)

Á

4
◊(fi�(y)) · n�(fi�(y)) uG,Á(y) pG,Á(y) ds(y)

= ≠
1
Á2

⁄
Á

≠Á

⁄

{d
ˆ�
G =t}

hÕ

3
t

Á

4
◊(fi�(y)) · n�(fi�(y)) uG,Á(y) pG,Á(y) ds(y)

|Òˆ�dˆ�
G

(y)|
dt

= ≠
1
Á2

⁄
Á

≠Á

⁄

{d
ˆ�
G =t}

hÕ

3
t

Á

4
◊(fi�(y)) · n�(fi�(y)) uG,Á(y) pG,Á(y) ds(y) dt.

Consider the map Ft(x) = exp
x
(tn�(x)), which, according to Theorem 2.3, is a di�eomorphism from �

onto its image. Applying a change of variables (see Theorem 2.5), we obtain:

J Õ

Á
(G)(◊) = ≠

⁄
Á

≠Á

⁄

�
hÕ

3
t

Á

4
◊(x) · n�(x) uG,Á(Ft(x)) pG,Á(Ft(x)) dVF

ú
t g(x) dt (4.11)

The volume form of the pullbacked metric F ú
t

g, is defined by:

(F ú

t
g)x(v1, v2) = dxF ú

t
(gFt(x))(v1, v2) = gFt(x)(dxFt(v1), dxFt(v2)).

This leads us to calculate the di�erential dxFt : Tx� æ TFt(x)U , accounting for the volume distortion
resulting from spulling back the metric. Fortunately, this is a problem already addressed in Riemannian
geometry (c.f. [322]). To addres this, let “(t) : (≠Á, Á) æ U be the geodesic with “(0) = x and
“Õ(0) = n�(x), then we have by Lemma 2.2, that the di�erential dxFt : Tx� æ TFt(x)�, is given by:

’v œ Tx�, dxFt(v) = Jv(t),

where Jv is a Jacobi field that satisfies the equation:

D2
t
Jv + R(Jv, “Õ)“Õ = 0,

with initial conditions:
Jv(0) = v, and DtJv(0) = Òvn�(x),

where R is the Riemann curvature tensor, the operator Dt denotes covariant di�erentiation along the
curve “(t), and Òvn� is the covariant derivative of n� in the direction v . we rely on two assumptions:

1. The shape derivative remains una�ected by the curvature on UÁ when traversing the path “(t). This
involves setting R = 0 in the equation above, rendering the Jacobi field equal to the identity map.

2. The functions uG,Á and pG,Á remain constant along the rays t ‘æ Ft(x), meaning that for all
(x, t) œ � ◊ (≠Á, Á), we have uG,Á(x) ¥ uG,Á(Ft(x)) and pG,Á(x) ¥ pG,Á(Ft(x)). In practical terms,
this equates to a zero-order approximation.

By rearranging the order of integration and utilizing these assumptions, we can express:

J Õ

Á
(G)(◊) ¥ ≠

1
Á2

⁄

�
◊(x) · n�(x) uG,Á(x) pG,Á(x)

⁄
Á

≠Á

hÕ

3
t

Á

4
dt d‡(x)

= ≠
1
Á

⁄

�
◊(x) · n�(x) uG,Á(x) pG,Á(x) dt d‡(x),

(4.12)

where the second line follows from the fact that:
⁄

Á

≠Á

hÕ

3
t

Á

4
dt = Á

⁄ 1

≠1
hÕ (t) dt = Á(h(1) ≠ h(≠1)) = Á.

Equation (4.12) is the desired approximated formula, which satisfies the typical Hadamard structure (4.4)
and no longer features the projection fi� mapping.

Remark 4.5. This approximation can be easily adapted to other physical contexts and boundary
condition types.
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4.2.4 A model optimization problem of the regions supporting boundary
conditions of a thermal mechanics problem

In order to illustrate the use setting of the shape optimization algorithm Algorithm 2, we consider a
situation in thermal mechanics. In this example, � represents a 3D mechanical part, in which cooling
e�ects are considered. The boundary ˆ� is decomposed ˆ� = G fi �fi, where:

• The temperature is fixed to zero 0 on G;

• The domain � is insulated from the outside on �.

Furthermore, we assume the existence of a heat source f œ L2(�) within the medium. In this situation, the
temperature uG within � is the solution to (4.6). We aim to identify the geometry of the region G which
minimizes the average temperature within the domain �, namely, we consider the shape optimization
problem involving the functional J(G):

J(G) = 1
|�|

⁄

�
uG dx + ¸ Area(G),

where ¸ > 0 serves as a penalization parameter on the area of G. The approximated shape derivative
JÁ(G) of the resulting functional can be approximated by the following formula; see (4.12).

J Õ

Á
(G)(◊) ¥ ≠

1
Á2

⁄

ˆG

uG,Á pG,Á ◊ · nˆG d‡(x) + ¸

⁄

ˆG

◊ · nˆG d‡(x), , (4.13)

where uG,Á œ H1(�) is the solution to (4.7) and pG,Á œ H1(�) is the solution to the adjoint problem
(4.10).

The numerical implementation of these concepts fits in the general context of the evolution of a region
G(t) within a surface S µ Rd discussed in Chapter 3. Utilizing the same techniques discussed in that
chapter, we can give a modified version of Algorithm 2 in Algorithm 3. The domain � is discretized by a
tetrahedral mesh T

n, changing every n-th iteration. The boundary surface mesh B
n contains an explicit

discretization of the region Gn. Introducing a pseudo-time t, one considers the evolution G(t) of the
region starting from an initial guess G0

µ S, under the e�ect of the velocity field ◊ inferred from (4.13).

Algorithm 3: Optimization of the region G bearing homogeneous Dirichlet boundary conditions.
Input: Mesh T

0 of �, whose discretized boundary B
0 contains two submeshes B

0
int of G0, and

B
0
ext of ˆ� \ G0.

for n = 0, . . . , N ≠ 1 do
1. Compute the signed distance function dˆ�

Gn to Gn at the vertices of the mesh B
n of ˆ�.

2. Compute the solutions uG,Á and pG,Á.

3. Infer a descent direction ◊n of JÁ(G) using the expression of J Õ
Á
(Gn)(◊).

4. For a fixed timestep �t > 0, solve the advection equation
;

ˆ„

ˆt
(t, x) + ◊n(x) · Òˆ�„(t, x) = 0 for (t, x) œ (0, �t) ◊ ˆ�,

„(0, x) = dˆ�
Gn(x) for x œ ˆ�,

on the total mesh B
n of ˆ�. A new level set function „n+1 = „(�t, ·) is obtained for

Gn+1 =
)

x œ ˆ�, „n+1(x) < 0
*

.

5. From the datum of „n+1 at the vertices of B
n, create a new, high-quality mesh B

n+1 of ˆ� made of
two submeshes B

n+1
int and B

n+1
ext for Gn+1 and ˆ� \ Gn+1, respectively.

end
Output: Mesh T

N whose discretized boundary B
N contains an explicit discretization B

N

int of GN .

We conduct two experiments. For the first experiment, we choose an average mesh size of h = 0.08
and ¸ = 0.01. A few intermediate designs obtained in the course of the optimization process are displayed
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Figure 4.2: Illustration of the mechanical part � where boundary conditions are optimized in Section 4.2.4.

in Fig. 4.3; the final design and the associated convergence history are reported in ??. For the second
experiment, we have chosen h = 0.05 and ¸ = 0.05. The optimized region G resulting from this experiment
and the convergence history are reported in Fig. 4.4.

In both experiments, the values of the objective function JÁ(G) smoothly decrease to a local minimum.
Interestingly, the optimization process starts by expanding the region G endowed with homogeneous
Dirichlet boundary conditions in an attempt to minimize the mean temperature TÁ(G) within �. Then,
the algorithm attempts to distribute this region everywhere in S while avoiding the creation of patterns
with large areas, which results in the creation of tree-like branches. This branching phenomenon agrees
with typical results in the optimal design of thermal structures; which is rooted in homogenization theory
citeallaire2002shape, see also [144] and Section 1.7.
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(a) i = 0 (b) i = 10

(c) i = 20 (d) i = 30

Figure 4.3: Boundary optimization process of the mechanical device considered in Section 4.2.4 with
penalization parameter ¸ = 0.01 and mesh size hmax = 0.08. The optimized region G bearing homogeneous
Dirichlet boundary conditions is represented in blue.
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(a) Optimized design (n = 40) in the boundary
optimization process of the mechanical device con-
sidered in Section 4.2.4 with penalization parameter
¸ = 0.01 and mesh size hmax = 0.08.

(b) Convergence history.

(c) Optimized design (n = 60) in the boundary
optimization process of the mechanical device con-
sidered in Section 4.2.4 with penalization parameter
¸ = 0.01 and mesh size hmax = 0.05

(d) Convergence history.

Figure 4.4: Optimized designs and convergence history.
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4.3 Sensitivity with respect to topological variations in the
support of boundary conditions

The notion of shape derivative introduced in Section 4.2 relies on Lipschitz di�eomorphic variations G◊

of a region G µ ˆ� of the form (4.1); in particular, G·◊ and G share the same topology, see e.g. [141].
Hence, strictly speaking, the above notion of shape derivative does not capture the sensitivity of J(G) to
topological changes in G. Admittedly, in practice, some topological changes may occur in the case of
an algorithm such as Algorithm 3: separate parts of the boundary ˆG of the optimized region G may
collide and merge by a slight abuse of the theoretical framework, but in any event, no hole can emerge
inside G, and the number of connected components of G is fixed. In particular, the optimized design
strongly dependso n the topology of the initial guess (see [16]). Hence, to make the resolution procedure
of (P) less sensitive to the existence of multiple local minimizers, we consider in this section a second,
complementary means to optimize a region G of ˆ�. We assume that � µ Rd is a smooth, fixed domain
with boundary ˆ�. The boundary is decomposed into the disjoint union ˆ� = � fi G, where � and G, are
open, Lipschitz subsets of ˆ�.

4.3.1 The topological derivative of replacing small regions of a set with
another set

We consider the problem of computing the topological derivative of the function J(G) in the problem
(P). Our objective is to gauge the sensitivity of the criterion J(G) when a small region of � is replaced
with G. More precisely, let us denote by H the lower half-space of Rd, defined by:

H := {x = (x1, . . . , xd) | xd < 0}. (4.14)

Additionally, let DÁ be the Á-disk in Rd, defined as:

DÁ := {x = (x1, . . . , xd≠1, 0) œ ˆH s.t. |x|< Á} . (4.15)

Let x0 œ � be a given point; since the domain � is smooth, there exists an open neighborhood O of 0 in
Rd and a smooth di�eomorphism T : O æ T (O) such that:

T (0) = x0 and T (H fl O) = � fl T (O). (4.16)

We then define the surfacic disk Êx0,Á with center x and radius Á by:

Êx0,Á := T (DÁ), (4.17)

and we consider the variations:

Gx0,Á := G fi Êx0,Á, �x0,Á := � \ Êx0,Á. (4.18)

See Fig. 4.5 for an illustration.
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Figure 4.5: Variation Gx0,Á in (4.18) of a surface region G obtained by addition of a “small” surfacic
disk Êx0,Á.
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4.3. SENSITIVITY WITH RESPECT TO TOPOLOGICAL VARIATIONS IN THE SUPPORT OF
BOUNDARY CONDITIONS

To make the analysis possible, it is necessary that Êx0,Á lie “far” away from the interface � := � fl G
in the sense that, there exists a constant ” > 0 such that:

dist(�, Êx0,Á) Ø ”, (4.19)

for all Á > 0 small enough. Then we can make the following definition of topological derivative.

Definition 4.2. The function J(G) has a topological derivative dT (G)(x) at some point x0 œ ˆ� \ G
if there exists a function fl : R+ æ R+ such that fl(Á) æ 0 as Á æ 0, and the following asymptotic
expansion holds:

J(Gx0,Á) = J(G) + fl(Á)dT (G)(x0) + o(fl(Á)). (4.20)

Remark 4.6. At first glance, this definition may appear to depend on the choice of the local
di�eomorphism T in (4.16). However, the analyses in the upcoming sections will demonstrate that
this is not the case.

Remark 4.7. In general, establishing an expression for rÁ is di�cult to when the boundary is not
flat. The work [57] conducts an in-depth analysis assuming a curved boundary and shows that the
curvature does not a�ect the resulting expression, for the case of the conductivity equation. To
simplify the analysis, the assumptions (4.16) and (4.17) enable us to concentrate the analysis on a
flat neighborhood around the point 0. See Fig. 4.6 illustrates the geometry of � around O. In this
setting, the di�erence rÁ tends to 0:

rÁ

Áæ0
≠≠≠æ 0 in H1(�), (4.21)

an admitted fact, which is proved thanks to standard a priori estimates, see again [57]. Throughout
the rest of this chapter, we denote ÊÁ := Ê0,Á for simplicity.
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Figure 4.6: The boundary ˆ� is assumed to be flat in a neighborhood of the considered point 0.

4.3.2 Topological derivative of a criterion under the constraint of a boundary
value problem

In this section, we introduce some general terminology and concepts that will be used throughout the
remainder of this chapter. We assume that the domain � accommodates a background solution u0 œ V ,
which satisfies a boundary value problem with boundary conditions specified on G and �. Here, V
denotes a Hilbert space of functions defined over �, with values in Rn, where n œ N. We are particularly
interested in shape functionals of the form:

J(G) =
⁄

�
j(u0) dx, (4.22)
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where j œ C2(Rn, R) satisfies the growth conditions:

÷K > 0, s.t. ’u œ Rn, |j(u)| Æ K(1 + |u|
2), |jÕ(u)| Æ K(1 + |u|), |jÕÕ(u)| Æ K. (4.23)

We can utilize the variations of Gx0,Á and �x0,Á described in Section 4.3 to define a perturbed solution
uÁ œ V for the original boundary problem. Here, we provide a couple of examples demonstrating the
perturbation.

Example 4.1 (Poisson equation). Let n = 1, V = H1(�). Given f œ L2(�), the solution u0 œ V
to the Poisson equation with homogeneous Dirichlet boundary conditions on G and homogeneous
Neumann boundary conditions on � can be perturbed into the solution uÁ œ V characterized by the
boundary value problem below:

Y
_]

_[

≠�u0 = f in �
u0 = 0 on G

ˆnˆ�u0 = 0 on �
,

Y
_]

_[

≠�uÁ = f in �
uÁ = 0 on G fi Êx0,Á

ˆnˆ�uÁ = 0 on � \ Êx0,Á

.

Example 4.2 (Linear elasticity equation). Let n = d, V = H1(�)d. Given f œ L2(�)d and
g œ L2(ˆ�)d, the solution u0 œ V to the linear elasticity equation with homogeneous Dirichlet
boundary conditions on �D and homogeneous Neumann boundary conditions on G can be perturbed
into the solution uÁ œ V characterized by the boundary value problem below:

Y
_]

_[

≠Ò · (Ae(u0)) = f in �
u0 = 0 on �D

Ae(u0)nˆ� = 0 on �
,

Y
___]

___[

≠Ò · (Ae(uÁ)) = f in �
uÁ = 0 on �D

Ae(uÁ)nˆ� = g on Êx0,Á

Ae(uÁ)nˆ� = 0 on � \ Êx0,Á

. (4.24)

In these circumstances, we aim to determine the asymptotic behavior of the potential uÁ as Á æ 0, as
well as that of the quantity of interest J(G). Let us consider the criterion at Gx0,Á for some fixed x œ �:

J(Gx0,Á) =
⁄

�
j(uÁ) dx. (4.25)

A simple application of the fundamental theorem of calculus yields:

j(uÁ) = j(u0) +
⁄ 1

0
jÕ(u0 + t(uÁ ≠ u0)) · (uÁ ≠ u0) dt. (4.26)

The twice continuous di�erentiability of j allows us to expand the function t ‘æ jÕ(u0 + t(uÁ ≠ u0)) at
t = 0:

jÕ(u0 + t(uÁ ≠ u0)) = jÕ(u0) + tjÕÕ(u0)(uÁ ≠ u0, uÁ ≠ u0) + o
!
t2

|uÁ ≠ u0|
"

. (4.27)
Utilizing the growth conditions (4.23), we can rewrite the perturbed criterion (4.25) as:

J(Gx0,Á) = J(G) +
⁄

�

⁄ 1

0
jÕ(u0 + trÁ) · rÁ dt dx = J(G) +

⁄

�
jÕ(u0) · rÁ dx + o

3⁄

�
|rÁ| dx

4
, (4.28)

where rÁ := uÁ ≠ u0. This expression follows a structure very similar to that of (4.20). The challenge here
is to find suitable fl(Á) and dT (G)(x0) that satisfy:

fl(Á)dT (G)(x0) =
⁄

�
jÕ(u0) · rÁ dx, ’x œ �. (4.29)

In the following sections, this issue will be addressed by establishing an integral representation for rÁ,
involving the Green’s function for the background problem, and by rewriting J(Gx0,Á)(x) in terms of an
adjoint state. In general, the analyses that we perform on the di�erent equations (Sections 4.6 to 4.8)
follow a very similar pattern, with some minor variations depending on the interior condition and type of
boundary conditions considered. To this end, in Section 4.6 we will perform a fairly complete analysis
for the model of the conductivity equation, whose background equation is very similar to those of the
Helmholtz and linear elasticity cases, for which we only will sketch the proofs.
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4.4. SOBOLEV SPACES ON THE BOUNDARY OF A DOMAIN

4.4 Sobolev spaces on the boundary of a domain
To a large extent, the asymptotic analysis in this chapter concern functions defined on the boundary ˆ�
of the ambient domain �, which naturally belong to suitable energy spaces, whose precise definitions are
recalled in the present section; we refer for instance to [172, 237] about these issues.

For any real number 0 < s < 1, the fractional Sobolev space Hs(ˆ�) is defined by:

Hs(ˆ�) =
)

u œ L2(ˆ�) s.t. ||u||Hs(ˆ�)< Œ
*

,

where ||u||
2
Hs(ˆ�):= ||u||

2
L2(ˆ�)+

⁄

ˆ�

⁄

ˆ�

|u(x) ≠ u(y)|2

|x ≠ y|
d≠1+2s

ds(x)ds(y).

By convention, H0(ˆ�) = L2(ˆ�), and for 0 < ≠s < 1, H≠s(ˆ�) is the topological dual of Hs(ˆ�).
Let now G be a Lipschitz open subset of ˆ�; we shall use two types of fractional Sobolev spaces of

functions on G:

• For any 0 < s < 1, we denote by Hs(G) the space of restrictions of functions from Hs(ˆ�), that is:

Hs(G) = {U |� for some U œ Hs(ˆ�)} , equipped with the quotient norm
||u||Hs(G):= inf

)
||U ||Hs(ˆ�), U œ Hs(ˆ�), U |G= u

*
.

• For any 0 < s < 1, we denote by ÂHs(G) the subspace of elements in Hs(ˆ�) with compact support
in G. It is equipped with the norm ||u||ÂHs(G)= ||u||Hs(ˆ�) induced by that of Hs(ˆ�). Equivalently,
Hs(G) is the space of functions u œ L2(G) whose extension Âu by 0 to ˆ� belongs to Hs(ˆ�).

As for the negative versions of these spaces,

• For 0 < s < 1, H≠s(G) is still defined as the space of distributions on G obtained by restriction of
a distribution in H≠s(ˆ�). The space H≠s(G) is naturally identified with the dual space of ÂHs(G)
via the following duality: for all u œ H≠s(G), and v œ ÂHs(G),

Èu, vÍ
H≠s(G), ÂHs(G) := ÈU, ÂvÍ

H≠s(ˆ�), ÂHs(ˆ�),

where U is any element in H≠s(ˆ�) such that U |G= u and Âv is the extension of v by 0 to the whole
ˆ�.

• For 0 < s < 1, ÂH≠s(G) is again the subspace of the distributions in H≠s(ˆ�) with compact support
in G. This space is naturally identified with the dual of Hs(G) via the following duality: for all
u œ ÂH≠s(G), v œ Hs(G),

Èu, vÍÂH≠s(G),Hs(G) := ÈÂu, V Í
H≠s(ˆ�), ÂHs(ˆ�),

where Âu is the extension of u by 0 to the whole ˆ� and V is any element in Hs(ˆ�) such that
V |G= u.

4.5 The single layer potential operator
Let us recall the definition of the single layer potential operator S�, representing the potential generated
in Rd by a density Ï : ˆ� æ R of charges on ˆ�.

Definition 4.3. The single layer potential associated to a smooth density function Ï œ C
Œ(ˆ�) is

the function defined by:

S�Ï(x) =
⁄

ˆ�
F (x, y)Ï(y) ds(y), x œ Rd

\ ˆ�.

s The next proposition gathers a few properties of this mapping.
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Proposition 4.3. The following facts hold true:

(i) The mapping Sˆ� has an extension as a bounded mapping from H≠1/2(ˆ�) into H1/2(ˆ�).

(ii) Let � be a Lipschitz open subset of ˆ�; then Sˆ� induces a bounded operator S� : ÂH≠1/2(�) æ

H1/2(�) via the formula:

’Ï œ ÂH≠1/2(�), S�Ï = (Sˆ� ÂÏ)|�,

where ÂÏ œ H≠1/2(ˆ�) is the extension by 0 to ˆ� of an element Ï œ ÂH≠1/2(�).

(iii) If d Ø 3, the mapping S� : ÂH≠1/2(�) æ H1/2(�) is invertible.

The first point is found in [237] and the second follows almost immediately from the definitions of the
functional spaces ÂH≠1/2(�) and H1/2(�). The last point is more subtle, and it is proved in [57]. Note
that when � is the unit disk D1, this result also holds when d = 2. This fact is needed in the rigorous
proof of the next Theorem 4.4 conducted in [57], but not in the formal method provided in the sequel.

4.6 The case of the conductivity equation
In this section, we address the case of the conductivity equation, which is arguably the simplest case to
analyze and serves as a baseline for analyzing more complex situations. Here, n = 1, V = H1(�). We
suppose that the boundary ˆ� is disjointly decompoed into ˆ� = �D fi �. Additionally, we assume that
the domain � is occupied by a medium with smooth isotropic conductivity “ œ CŒ(�), satisfying the
following bounds:

’x œ �, – Æ “(x) Æ —,

for some fixed constants 0 < – Æ —. In the background scenario, the voltage potential u0 œ H1(�), in
response to a smooth external source f œ CŒ(�), is the unique solution to the following boundary value
problem: Y

___]

___[

≠Ò · (“Òu0) = f in �,

u0 = 0 on �D,

“
ˆu0

ˆnˆ�
= 0 on �.

(4.30)

In accordance to the classical elliptic regularity theory, the voltage potential u0 is smooth except maybe
at the transition zone � = �D fl �, where the boundary condition changes; see Section 4.2.2 and [172]. As
suggested in the previous section, we introduce the error rÁ := uÁ ≠ u0. The primary tool for analyzing rÁ

is the concept of Green’s function. We begin by recalling the expression for the fundamental solution
F (x) of the operator ≠� in free space:

F (x) =

Y
_]

_[

≠
1

2fi
log|x| if d = 2,

1
(d ≠ 2)–d

|x|
2≠d if d Ø 3,

(4.31)

where –d is the area of the unit sphere Sd≠1
µ Rd. For fixed x, the function F satisfies:

≠�F = ”0 in the sense of distributions on Rd,

where ”0 is the Dirac delta distribution at 0. Now let F (x, y) := F (|x ≠ y|). From this, one can construct
the Green’s function y ‘æ N(x, y) for the background equation (4.30). This function satisfies, for all
x œ �: Y

___]

___[

≠Òy · (“(y)ÒyN(x, y)) = ”y=x in �,

N(x, y) = 0 for y œ �D,

“(y) ˆN

ˆnˆ�(y) (x, y) = 0 for y œ �.

(4.32)
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Remark 4.8. The function N(x, y) is symmetric in its arguments (see [149] for a proof) and i
related to F (x, y) via the relation:

N(x, y) = 1
“(x)F (x, y) + R(x, y),

where R(x, y) is the corrector term, solution to:
Y
______]

______[

≠Òy · (“(y)ÒyR(x, y)) = 1
“(y)Ò“(y) · ÒyF (x, y) in �,

R(x, y) = ≠
1

“(y)F (x, y) for y œ �D,

“(y) ˆR

ˆnˆ�(y) (x, y) = “(y)
“(x)

ˆN

ˆnˆ�(y) (x, y) for y œ �.

The functional characterization of the corrector term R(x, y) depends on the singularity of F (x, y).
However, it is known that y ‘æ R(x, y) belongs at least to H1(�). Additionally, for every open
subset U compactly contained in Rd

\ (� fi {x}), it is of class CŒ on � fl U . For more details on
the characterization of the corrector term and the Green’s function, we srefer to the standard texts
[62, 164].

The key property of N(x, y) that we will utilize is that, for any function Ï œ C1(�) such that Ï = 0 on
�D, the following holds:

Ï(x) =
⁄

�
“(y)ÒyN(x, y) · ÒÏ(y) dy, x œ �. (4.33)

In particular, one may integrate by parts to express the solution to (4.30) in terms of N(x, y) as:

u0(x) =
⁄

�
f(y)N(x, y) dy. (4.34)

We begin the analysis by introducing the Green’s function L(x, y) for the version of (4.30) posed on
the lower half-space H with homogeneous Neumann boundary conditions imposed on ˆH. For all x œ H,
y ‘æ L(x, y) satisfies: Y

]

[

≠Òy · (“(y)ÒyL(x, y)) = ”y=x in H,

“(y) ˆL

ˆnˆ�(y) (x, y) = 0 for y œ ˆH.
(4.35)

The existence of this function can be established via the so called method of images (see [194]), which
yields the following construction:

L(x, y) = 1
“

(F (x ≠ y) + F (x + y)) . (4.36)

It is straightforward to see that the definition above satisfies (4.35). Similarly to N(x, y), for Ï œ C1(�),
the following formula holds:

Ï(x) =
⁄

�
“(y)ÒyL(x, y) · ÒÏ(y) dy, x œ �. (4.37)

4.6.1 Replacement of homogeneous Neumann boundary conditions by homo-
geneous Dirichlet conditions

In the general language of Section 4.3.2, we assume that G = �D, meaning the homogeneous Neumann
boundary condition on the small disk ÊÁ µ � is replaced by a homogeneous Dirichlet condition. In this
case, the perturbed potential uÁ œ H1

�D
(�) is then the unique solution to:

Y
___]

___[

≠Ò · (“ÒuÁ) = f in �,

uÁ = 0 on �D fi ÊÁ,

“
ˆuÁ

ˆnˆ�
= 0 on � \ ÊÁ.

(4.38)
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Furthermore, we have that rÁ = uÁ ≠ u0 satisfies the boundary value problem:
Y
___]

___[

≠Ò · (“ÒrÁ) = 0 in �,
rÁ = 0 on �D,

rÁ = ≠u0 on ÊÁ,

“
ˆrÁ

ˆnˆ�
= 0 on � \ ÊÁ.

(4.39)

The main result in this setting is the following asymptotic expansion, which was rigorously proved in
[56] without the simplifying assumptions (see Remark 4.7). As mentioned in Remark 4.7, using a flat
boundary does not a�ect the final result. For convenience, we will provide a formal sketch of the proof
here.

Theorem 4.4. For any point x œ � \ (� fi {0}), the following asymptotic expansion holds:

uÁ(x) =

Y
_]

_[

u0(x) ≠
fi

|log Á|
“(0) u0(0) N(x, 0) + o

3
1

|log Á|

4
if d = 2,

u0(x) ≠ 4Á “(0) u0(0) N(x, 0) + o(Á) if d = 3.

Proof. We assume that “ is constant on the set ÊÁ. sWe now proceed in four steps to derive the asymptotic
behavior of rÁ.

Step 1. We construct a representation formula for the values of rÁ “far” from 0 in terms of its values
inside the region ÊÁ. This task starts from the integral representation of rÁ with the help of the Green’s
function N(x, y) defined in (4.32). For any x œ �, it holds:

rÁ(x) = ≠

⁄

�
Òy · (“(y)ÒyN(x, y))rÁ(y) dy.

By integrating by parts twice in the above expression, we successively obtain:

rÁ(x) = ≠

⁄

ˆ�
“(y) ˆN

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

�
“(y)ÒyN(x, y) · ÒrÁ(y) dy

= ≠

⁄

ˆ�
“(y) ˆN

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

ˆ�
“(y) ˆrÁ

ˆnˆ�
(y)N(x, y) ds(y).

Now, considering the boundary conditions satisfied by rÁ and y ‘æ N(x, y), the first integral on the
right-hand side vanishes, as does the integrand of the second integral on �D and � \ ÊÁ. Thus, we obtain:

rÁ(x) =
⁄

ÊÁ

“(y) ˆrÁ

ˆnˆ�
(y)N(x, y) ds(y).

Applying a change of variables in the above integral, we obtain:

rÁ(x) =
⁄

D1

ÏÁ(z)N(x, Áz) ds(z), (4.40)

where we have introduced the function ÏÁ(z) := Ád≠1
3

“
ˆrÁ

ˆnˆ�

4
(Áz) œ ÂH≠1/2(D1). This is the desired

representation formula.
Step 2. We characterize the function ÏÁ by an integral equation. To achieve this, we utilize the

Green’s function L(x, y) of the lower half-space, which captures the behavior of N(x, y) near 0, but is
completely. Again, integrating by parts, we obtain that for any point x œ � that is far from 0:

rÁ(x) = ≠

⁄

�
Òy · (“(y)ÒyL(x, y))rÁ(y) dy (4.41)

= ≠

⁄

ˆ�
“(y) ˆL

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

�
“(y)ÒyL(x, y) · ÒrÁ(y) dy (4.42)

= ≠

⁄

ˆ�
“(y) ˆL

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

ˆ�
“(y) ˆrÁ

ˆnˆ�
(y)L(x, y) ds(y). (4.43)
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Now using the fact that ˆ� coincides with ˆH in a neighborhood O of 0, and the boundary conditions
satisfied by rÁ, we obtain:

rÁ(x) =
⁄

ÊÁ

“(y) ˆrÁ

ˆnˆ�
(y)L(x, y) ds(y) + KrÁ(x), where

KrÁ(x) := ≠

⁄

�\O

“(y) ˆL

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

�D

“(y) ˆrÁ

ˆnˆ�
(y)L(x, y) ds(y).

Changing variables in the integral above, and letting x tend to ÊÁ, with the continuity of the single layer
potential (see Proposition 4.3), we obtain

’x œ D1, ≠u0(Áx) =
⁄

ÊÁ

Ád≠1“
ˆrÁ

ˆnˆ�
(Áz)L(Áx, Áz) ds(z) + KrÁ(Áx).

Now, since Áx lies “far” from the support of the integrals featured in KrÁ and invoking the convergence
(4.21) of the error rÁ, the last term in the above right-hand side tends to 0 as Á æ 0. Taking advantage of
the explicit form (4.36) of the Green’s function L(x, y), this eventually leads to the following integral
equation for the function ÏÁ œ ÂH≠1/2(D1):

2
“

S1ÏÁ = ≠u0(0) + o(1), (4.44)

where we have used the shortcut S1Ï := SD1Ï, see Proposition 4.3.
Step 3. We analyze the integral equation (4.44) for ÏÁ. At first, the combination of (4.44) with

Proposition 4.3 reveals that ÏÁ is uniformly bounded with respect to Á > 0, i.e. there exists a constant
C > 0 independent of Á such that:

||ÏÁ||ÂH≠1/2(D1)Æ C. (4.45)

We then leverage the explicit expression (4.31) for F (x, y), which depends on the space dimension.

• When d = 2, we obtain the following equation:

≠

⁄

D1

log|Áx ≠ Áz|ÏÁ(z) ds(z) = ≠fi“u0(0) + o(1),

which rewrites:
|log Á|

3⁄

D1

ÏÁ(z) ds(z)
4

≠ S1ÏÁ(z) = ≠fi“u0(0) + o(1).

This relation yields immediately:
⁄

D1

ÏÁ(z) ds(z) = ≠
1

| log Á|
fi“u0(0) + o

3
1

|log Á|

4
.

• For the case d = 3 the integral equation (4.44) reads:

S1ÏÁ(z) = ≠
Á

2“u0(0), where S1Ï = 1
4fi

⁄

D1

1
|x ≠ z|

Ï(z) ds(z).

Using the explicit knowledge of the solution to this equation (see [95]):

’x œ D1, Ï(x) = 4
fi


1 ≠ |x|2

, (4.46)

we obtain, in particular:

ÏÁ(z) = ≠
Á

2“u0(0)S≠1
1 1 + o(Á), and so

⁄

D1

ÏÁ(z) ds(z) = ≠4Á“u0(0) + o(Á).

Step 4. We pass to the limit in the representation formula (4.40). Performing a Taylor expansion for
the function y ‘æ N(x, y) in a neighborhood of 0, and considering that x /œ � fi {0}, we obtain:

----
⁄

D1

ÏÁ(z) (N(x, Áz) ≠ N(x, 0)) ds(z)
---- Æ ||ÏÁ||H≠1/2(D1)||N(x, Á·) ≠ N(x, 0)||H1/2(D1)

Æ

I
o(| log Á|), d = 2,

o(Á), d = 3.
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This leads to

rÁ(x) =
3⁄

D1

ÏÁ(z) ds(z)
4

N(x, 0) +
I

o(| log Á|), d = 2,

o(Á), d = 3.

yielding the desired formulas.
⌅

Let us now cast this result in the context of shape and topology optimization. The optimized region
G is the homogeneous Neumann boundary � and we consider an objective function of the form:

J(G) =
⁄

�
j(uG) dx,

where uG is the solution to (4.30) with G = �. Here, j : R æ R is smooth as a function, satisfying the
growth conditions (4.23). Then, the following corollary yields the topological sensitivity.

Corollary 4.1. The perturbed criterion J(G0,Á), where G = �D, defined by:

J(G0,Á) :=
⁄

�
j(uÁ) dx,

accounting for the replacement of the homogeneous Neumann boundary conditions on Ê0,Á µ � by
homogeneous Dirichlet boundary conditions, has the following asymptotic expansion:

J(G0,Á) =

Y
_]

_[

J(G) + fi

| log Á|
“(0) u0(0) p0(0) + o

3
1

|log Á|

4
if d = 2,

J(G) + 4Á “(0) u0(0) p0(0) + o(Á) if d = 3,

where p0 is the unique solution H1(�) to the boundary value problem:
Y
___]

___[

≠Ò · (“Òp0) = ≠jÕ(u0) in �,

p0 = 0 on �D,

“
ˆp0

ˆnˆ�
= 0 on �.

(4.47)

Proof. We show the proof for the case d = 3, the case d = 2 being similar. At first, using the asymptotic
expansion Theorem 4.4, we have:

J(G0,Á) = J(G) +
⁄

�
jÕ(u0(x)) (≠4Á“(0) u0(0) N(x, 0)) dx + o(Á).

This follows from an application of the Lebesgue dominated convergence theorem whose rigorous jus-
tification is detailed in [100]. Now using the representation formula (4.34) for the adjoint state p0 in
Theorem 4.4, after integrating by parts twice, we see that:

J(G0,Á) = J(G) ≠ 4Á“(0) u0(0)
⁄

�
jÕ(u0(x))N(x, 0) dx + o(Á)

= J(G) + 4Á“(0) u0(0)p0(0) + o(Á),

which is the desired result.
⌅
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Remark 4.9 (The case of an inhomogeneous Dirichlet boundary). It is possible to replace
the homogeneous Neumann boundary condition in (4.30) with an inhomogeneous Dirichlet boundary
condition on ÊÁ, where uÁ = uin for some smooth function uin œ C

Œ(Rd). The above calculations can
be straightforwardly adapted to this case, and the asymptotic expansion of rÁ becomes:

uÁ(x) =

Y
_]

_[

u0(x) + fi

|log Á|
“(0)(uin(0) ≠ u0(0))N(x, 0) + o

3
1

|log Á|

4
if d = 2,

u0(x) + 4Á“(0) (uin(0) ≠ u0(0))N(x, 0) + o(Á) if d = 3.

In this case, the perturbed criterion J(G0,Á), accounting for the replacement of the homogeneous
Neumann boundary conditions on ÊÁ µ � by inhomogeneous Dirichlet boundary conditions, has the
following asymptotic expansion:

J(G0,Á) =

Y
_]

_[

J(G) ≠
fi

| log Á|
“(0) (uin(0) ≠ u0(0)) p0(0) + o

3
1

|log Á|

4
if d = 2,

J(G) ≠ 4Á “(0) (uin(0) ≠ u0(0)) p0(0) + o(Á) if d = 3.

4.6.2 Replacement of homogeneous Neumann boundary conditions by inho-
mogeneous Neumann boundary conditions

We presently turn to the situation where the homogeneous Neumann boundary condition on � is replaced
by an inhomogeneous Neumann condition on a small region ÊÁ µ �N . The boundary ˆ� is decomposed
into three disjoint pieces, as

ˆ� = �D fi � fi �N ,

where:

• The region �D is the support of homogeneous Dirichlet boundary conditions,

• The region � is the support of a homogeneous Neumann boundary condition.

• The region �N is the support of a inhomogeneous Neumann boundary condition.

The region ÊÁ still denotes the flat disk ÁD1. The voltage potential uÁ in this perturbed situation is the
solution to the boundary value problem:

Y
_______]

_______[

≠Ò · (“ÒuÁ) = f in �,

uÁ = 0 on �D,

“
ˆuÁ

ˆnˆ�
= 0 on � \ ÊÁ,

“
ˆuÁ

ˆnˆ�
= g on �N fi ÊÁ.

(4.48)

Theorem 4.5. The following asymptotic expansions hold:

uÁ(x) = u0(x) + 2Ág(0)N(x, 0) + o(Á) if d = 2,

and
uÁ(x) = u0(x) + Á2fig(0)N(x, 0) + o(Á2) if d = 3.

Sketch of proof. The derivation of these formulas essentially follows the trail of the proof of Theorem 4.4,
in a much simpler version. Again, let rÁ := uÁ ≠ u0 be the error between the perturbed and background
potentials. This function satisfies the following boundary value problem:

Y
_____]

_____[

≠Ò · (“ÒrÁ) = 0 in �,
rÁ = 0 on �D,

“
ˆrÁ

ˆnˆ�
= 0 on (�N fi �) \ ÊÁ,

“
ˆrÁ

ˆnˆ�
= g on ÊÁ.

(4.49)
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From the definition of the Green’s function N(x, y) in (4.32), it holds:

rÁ(x) = ≠

⁄

�
Òy · (“(y)ÒyN(x, y))rÁ(y) dy,

and so, after integration by parts:

rÁ(x) = ≠

⁄

ˆ�
“(y) ˆN

ˆny

(x, y)rÁ(y) ds(y) +
⁄

ˆ�
“(y) ˆrÁ

ˆnˆ�
(y)N(x, y) ds(y).

Now using the boundary conditions satisfied by the functions rÁ and y ‘æ N(x, y), it follows:

rÁ(x) =
⁄

ÊÁ

g(y)N(x, y) ds(y)

= Ád≠1
⁄

D1

g(Áz)N(x, Áz) ds(z)

and so
rÁ(x) = Ád≠1g(0)N(x, 0)

3⁄

D1

ds(z)
4

+ o(Ád≠1),

which yields the desired result.
⌅

Corollary 4.2. The perturbed criterion J(G0,Á), defined by,

J(G0,Á) :=
⁄

�
j(uÁ) dx,

where uÁ is the solution to the boundary value problem (4.48), has the following expansion:

J(G0,Á) = J(G) ≠ 2Ág(0)p0(0) + o(Á) if d = 2,

and
J(G0,Á) = J(G) ≠ fiÁ2g(0)p0(0) + o(Á2) if d = 3,

where p0 œ H1(�) is again the solution to (4.47).

The proof is omitted, as it is completely similar to that of Corollary 4.1.

4.7 The case of the Helmholtz equation
In this section, we slip into the physical context where the field u0 is the solution to the Helmholtz
equation, as in acoustics or wave scattering. We adapt the material of the previous sections to handle
applications in this setting. As we have mentioned, the calculation of exact or approximate shape
derivatives of functions depending on a region G µ ˆ� can be conducted by the same procedures as those
described in Section 4.2 in the context of the conductivity equation. Hence, we focus on the calculation of
topological derivatives, referring to Section 4.12 for examples of the use of shape derivatives in the present
situation. As a great part of the analysis is similar, we essentially focus on the di�erences. To emphasize
the parallel between both situations, we retain the same notations as in the previous Section 4.6.

4.7.1 Presentation of the Helmholtz model
For the simplicity of the analysis, we focus on a model interior Helmholtz problem, excerpted from
[43, 119, 323]. The arguments exposed in here can be adapted to the situation of infinite propagation
media, see Section 4.12 for an example in this context. Let � be a smooth bounded domain in Rd, whose
boundary ˆ� is decomposed into two disjoint pieces, as

ˆ� = � fi �R,

where:
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• The region � is the support of homogeneous Neumann boundary conditions,

• The region �R is the support of a homogeneous Robin boundary condition.
The background equation reads:

Y
___]

___[

≠Ò · (“Òu0) ≠ k2u0 = f in �,

“
ˆu0

ˆnˆ�
= 0 on �,

“
ˆu0

ˆnˆ�
+ iku0 = 0 on �R.

(4.50)

Here, we have denoted the wave number by k > 0, and we have assumed a time dependency of the form
eikt (i.e. u0(x) is the complex-valued amplitude of the time-dependent wave u0(x)eikt). The coe�cient “
accounts for the physical properties of the medium, and it satisfies:

0 < “ < +Œ.

From the physical viewpoint, the homogeneous Neumann boundary condition on � accounts for a hard
wall, where perfect reflection of the incoming wave occurs, while the Robin condition encodes a partial
absorption of the wave. We refer to Chap. 35 in [137] about the well-posedness of this boundary value
problem, which is essentially due to the non zero imaginary part in the Robin condition.

Let us recall that the fundamental solution F (x) in the free space Rd (d = 2, 3) for the Helmholtz
operator u ‘æ ≠�u ≠ k2u is given by the following formulas:

F (x) =

Y
_]

_[

≠1
4i

H(1)
0 (k|x|) if d = 2,

eik|x|

4fi|x|
if d = 3,

(4.51)

where H(1)
0 is the Hankel function of the first kind and of order 0, which is the solution to the ordinary

di�erential equation:
1
r

d
dr

3
r

dH

dr
(r)

4
+ k2H(r) = 0, for r > 0,

see for instance [2]. Let F (x, y) := F (|x ≠ y|). The Green’s function N(x, y) for the background problem
(4.50) can be constructed from this datum by standard means, as the solution to:

Y
___]

___[

≠Òy · (“ÒyN(x, y)) ≠ k2N(x, y) = ”y=x in �,

“
ˆN

ˆnˆ�(y) (x, y) = 0 for y œ �,

“
ˆN

ˆnˆ�(y) (x, y) + ikN(x, y) = 0 for y œ �R.

(4.52)

Remark 4.10. In this context also, a Green’s function L(x, y) for the operator in (4.50) on the lower
half-space H, ssatisfying homogeneous Neumann boundary conditions on ˆH, can be constructed by
the method of images:

L(x, y) = 1
“(x) (F (x, y) + F (x, ≠y)). (4.53)

4.7.2 Replacement of homogeneous Neumann boundary conditions by Robin
boundary conditions

We consider a perturbed version of the problem (4.50) where the homogeneous Neumann boundary
condition is replaced by an impedance (or Robin) boundary condition on a “small” surfacic disk ÊÁ µ �
around x, that is: Y

___]

___[

≠Ò · (“ÒuÁ) ≠ k2uÁ = f in �,

“
ˆuÁ

ˆnˆ�
= 0 on � \ ÊÁ,

“
ˆuÁ

ˆnˆ�
+ ikuÁ = 0 on �R fi ÊÁ,

(4.54)

We rely again on the locally flat boundary assumption (see Remark 4.7) and set x0 = 0, ÊÁ = Êx0,Á, which
we assume “ is completely constant. Our main result concerning the asymptotic behavior of uÁ when
Á æ 0 is the following.
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Theorem 4.6. Let 0 œ �. The following asymptotic expansion holds:

uÁ(x) =
I

u0(x) ≠ 2Áiku0(0)N(x, 0) + o(Á) if d = 2,

u0(x) ≠ fiÁ2iku0(0)N(x, 0) + o(Á2) if d = 3.

Sketch of proof. Let 0 = 0. We rely on the formal argument employed in our treatment of Theorem 4.4,
and we only sketch the main frame for brevity. The error rÁ = uÁ ≠ u0 is the unique solution in H1(�; C)
to the following boundary value problem:

Y
_______]

_______[

≠Ò · (“ÒrÁ) ≠ k2rÁ = 0 in �,

“
ˆrÁ

ˆnˆ�
= 0 on � \ ÊÁ,

“
ˆrÁ

ˆnˆ�
+ ikrÁ = 0 on �R,

“
ˆrÁ

ˆnˆ�
+ ikrÁ = ≠iku0 on ÊÁ.

(4.55)

We proceed with four steps.

Step 1. We construct a representation formula for the values of rÁ “far” from 0 in terms of its values
inside the region ÊÁ. To this end, we rely on the Green’s function N(x, y) of the background problem
(4.50); it holds:

rÁ(x) = ≠

⁄

�

!
Òy · (“ÒyN(x, y)) + k2N(x, y)

"
rÁ(y) dy

= ≠

⁄

ˆ�
“

ˆN

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

�

!
“ÒyN(x, y) · ÒrÁ(y) ≠ k2N(x, y)rÁ(y)

"
dy

= ≠

⁄

ˆ�
“

ˆN

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

ˆ�
“

ˆrÁ

ˆnˆ�(y) (y)N(x, y) ds(y),

where the second and third lines follow from integration by parts. Recalling the boundary conditions
satisfied by rÁ and N(x, ·) in (4.50) and (4.52), the above expression simplifies to:

rÁ(x) =
⁄

ÊÁ

“
ˆrÁ

ˆnˆ�(y) (y)N(x, y) ds(y),

and so, after rescaling:

rÁ(x) =
⁄

D1

ÏÁ(z)N(x, Áz) ds(z), where ÏÁ(z) := Ád≠1
3

“
ˆrÁ

ˆnˆ�

4
(Áz) œ ÂH≠1/2(D1). (4.56)

Step 2. We characterize the function ÏÁ by an integral equation. To achieve this, we essentially
repeat the calculations from the first step, except that we use the explicit Green’s function for the
half-space L(x, y) discussed in Remark 4.10 in place of the more abstract Green’s function N(x, y) for
the background equation (4.50). Repeating the calculation of the first step, we obtain:

rÁ(x) = ≠

⁄

ˆ�
“

ˆL

ˆnˆ�(y) (x, y)rÁ(y) ds(y) +
⁄

ˆ�
“

ˆrÁ

ˆnˆ�(y) (y)L(x, y) ds(y),

Now using the boundary conditions satisfied by both functions rÁ and L(x, ·), it follows:

rÁ(x) =
⁄

ÊÁ

“
ˆrÁ

ˆnˆ�(y)L(x, y) ds(y) + KrÁ(x),

where the term KrÁ(x) gathers integrals of rÁ and its derivatives whose supports are “far” from 0.
Now “letting x tend to ÊÁ” in this formula, and inserting the resulting expression in the Robin

boundary condition in (4.55), we obtain:

’x œ ÊÁ, “
ˆrÁ

ˆnˆ�
(x) + ik

⁄

ÊÁ

“
ˆrÁ

ˆnˆ�(y)L(x, y) ds(y) + KrÁ(x) = ≠iku0(x).

120



4.7. THE CASE OF THE HELMHOLTZ EQUATION

Eventually, by rescaling the integral, we obtain the following integral equation for the function ÏÁ in
(4.56):

’x œ D1,
1

Ád≠1 ÏÁ(x) + ik

⁄

D1

ÏÁ(z)L(Áx, Áz) ds(z) = ≠iku0(0) + o(1). (4.57)

Step 3. We use this integral equation to glean information about the asymptotic behavior of ÏÁ. To
this end, we observe that, because of the homogeneity of L(·, ·), the integral operator at the left-hand side
of (4.57) is of order |log Á| if d = 2, and of order Á≠(d≠2) if d Ø 3; it is thus negligible with respect to the
first term in the left-hand side of this equation. Hence, taking the mean value in (4.57), we immediately
obtain the following relations:

⁄

D1

ÏÁ(z) ds(z) =
;

≠2ikÁu0(0) + o(Á) if d = 2,
≠fiÁ2iku0(0)fi + o(Á2) if d = 3,

which is the needed information for our purpose.
Step 4. We pass to the limit in the representation formula (4.56). The application of the Lebesgue

dominated convergence theorem to the representation formula (4.56) yields:

rÁ(x) ¥

3⁄

D1

ÏÁ(z) ds(z)
4

N(x, 0),

whence the desired result.
⌅

We can cast this result in the context of shape and topology optimization, along the lines of Corollary 4.1.
The optimized region G is the Robin boundary �R and we consider an objective function of the form:

J(G) =
⁄

�
j(uG) dx,

where uG is the solution to (4.50) with G = �R. Here, j : C æ R is smooth, and it satisfies the growth
conditions (4.23); with a small abuse of notation, we let:

jÕ(u) := ˆj

ˆu1
(u) + i

ˆj

ˆu2
(u) œ C,

where u1 represents the real part of j and u2 its imaginary part. The sensitivity of the function J(G)
with respect to the addition of a small surfacic disk ÊÁ is then given by the next result.

Corollary 4.3. The perturbed criterion J(G0,Á) has the following asymptotic expansion in terms of
Á:

J(G0,Á) = J(G) + 2Ák Im
1

u0(0)p0(0)
2

+ o(Á) if d = 2,

and
J(G0,Á) = J(G) + fiÁ2k Im

1
u0(0)p0(0)

2
+ o(Á2) if d = 3,

where the adjoint state p0 œ H1(�; C) is the unique solution to the following boundary value problem:
Y
____]

____[

≠Ò · (“Òp0) ≠ k2p0 = ≠jÕ(u0) in �,

“
ˆp0

ˆnˆ�
= 0 on �,

“
ˆp0

ˆnˆ�
≠ ikp0 = 0 on �R.

(4.58)

Sketch of proof. The proof is very similar to that of Corollary 4.1. Considering the case d = 3 to set
ideas, the Lebesgue dominated convergence theorem shows that:

J(G0,Á) = J(G) ≠ fiÁ2kRe
3⁄

�
jÕ(u0(x))

1
iu0(0)N(x, 0)

2
dx

4
+ o(Á2),

where we have used the basic calculus rule:

’u, h œ C, j(u + h) = j(u) + Re
!
jÕ(u)h

"
+ o(h), where o(h) hæ0

≠≠≠æ 0.
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Now using that the complex conjugate N(x, y) is the Green’s function for the boundary value problem
(4.58) (where the sign in the Robin boundary condition is changed with respect to (4.50)), the representation
formula (4.34) for p0 reads:

p0(0) = ≠

⁄

�
jÕ(u0(x))N(x, 0) dx,

and so:
J(G0,Á) = J(G) ≠ fiÁ2kRe

3
iu0(0)

⁄

�
jÕ(u0(x))N(x, 0) dx

4
+ o(Á2)

= J(G) + fiÁ2k Im
1

u0(0)p0(0)
2

+ o(Á2),

which is the desired formula.
⌅

4.8 The case of the linear elasticity system
In this section, we extend the previous material to address applications within the context of the linear
elasticity system. We continue to use the same notations whenever applicable, and the process of
calculating exact or approximate shape derivatives follows closely the approach outlined in Section 4.6,
although the computations are more technically involved. Therefore, we do not dwell on these aspects
but instead focus on calculating the sensitivity of a model function acconuting for the insertion of a small
Dirichlet region wihtin the homogeneous Neumann zone. It is important to note that this discussion
can be easily adapted to various model variations, such as those involving loads on a fixed subset of the
boundary.

4.8.1 Presentation of the linear elasticity setting
In this section, � stands for a mechanical structure, whose boundary ˆ� is decomposed into three disjoint
pieces:

ˆ� = �D fi �N fi �,

where:
• The displacement of the shape � is prevented on the region �D;

• The region �N is subjected to surface loads g œ L2(ˆ�)d;

• The remaining part � is traction free.
Assuming body forces f œ L2(Rd)d, the displacement u of � is the unique solution in the space H1

�D
(�)d

to the following linear elasticity system:
Y
___]

___[

≠Ò · (Ae(u0)) = f in �,

Ae(u0)nˆ� = g on �N ,

Ae(u0)nˆ� = 0 on �,

u0 = 0 on �D.

(4.59)

Here, e(u) := 1
2 (Òu + ÒuT ) is the strain tensor associated to a displacement field, and A is the Hooke’s

tensor, defined by:
’e œ Sd(R), Ae = 2µe + ⁄tr(e)I,

where ⁄ and µ are the Lamé coe�cients of the elastic material. Note that these coe�cients are often
better expressed in terms of the more physical Young’s modulus E and Poisson’s ratio ‹:

µ = E

2(1 + ‹) , and ⁄ =
I

E‹

(1+‹)(1≠2‹) if d = 3,
E‹

1≠‹2 if d = 2 (plane stress).

The fundamental solution to the linear elasticity operator u ‘æ ≠Ò · (Ae(u)) in the free space Rd is
provided by the so-called Kelvin matrix, defined by

Fij(x) =

Y
__]

__[

–

4fi

”ij

|x|
+ —

4fi

xixj

|x|3
, if d = 3,

≠
–

2fi
”ij log |x| + —

2fi

xixj

|x|2
, if d = 2.

(4.60)
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for 1 Æ d Æ d, where the constants – and — are given by:

– = 1
2

3
1
µ

+ 1
2µ + ⁄

4
, and — = 1

2

3
1
µ

≠
1

2µ + ⁄

4
.

The meaning is that, for j = 1, . . . , d, the jth column Fj of F is the solution to the equation

≠Ò · (Ae(Fj)) = ”0ej ,

where ej is the jth vector of the canonical basis of Rd. From the physical point of view, if a œ Rd is a
unit vector, �a is the displacement when a pointwise load a is imposed at 0.

Remark 4.11. It is interesting to recall how this formula for the Green’s function of the linear
elasticity system can be derived (see [30] for details). We search for one solution, in the sense of
distributions, to the equation

≠µ�u ≠ (µ + ⁄)Ò(Ò · u) = ”0ej . (4.61)

Taking the divergence of this equation, we are led to search for uk such that

≠(2µ + ⁄)�(Ò · u) = ˆ

ˆxj

”0.

One solution to this equation is
Ò · u = 1

2µ + ⁄

ˆG

ˆxj

,

where G(x) is the Green’s function for the operator ≠�. Hence, (4.61) rewrites:

≠µ�u = µ + ⁄

2µ + ⁄
Ò

3
ˆG

ˆxj

4
+ ”0ej .

One solution to this equation can now be found under the form of a radial function, after a simple
(albeit tedious) calculation.

The variational counterpart of (4.60) reads: for all su�ciently smooth function Ï œ C
Œ
c

(Rd)d,

Ïj(x) =
⁄

Rd

Ae(Fj) : e(Ï) dx.

Using the fundamental solution (4.60), it is possible to construct the Green’s function Nij(x, y) for the
background linear elasticity system (4.59): for j = 1, . . . , d, the jth column Nj of N satisfies the equation

Y
]

[

≠Òy · Aey(Nj(x, y)) = ”y=xej in �,
Nj(x, y) = 0 for y œ �D,

Aey(Nj(x, y)) = 0 for y œ � fi �N ,
(4.62)

that is, under variational form:

For all Ï œ C
Œ

c
(Rd)d s.t. Ï = 0 on �D, Ïj(x) =

⁄

�
Aey(Nj(x, y)) : e(Ï)(y) dy. (4.63)
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Remark 4.12. Contrary to the situations in Sections 4.6 and 4.7 involving the conductivity and
Helmholtz equations, the construction of a Green’s function L(x, y) for the elasticity system (4.59) in
the lower half-space H cannot be easily achieved by the method of images. An expression, however, can
be established. For two points x, y on ˆH, the (matrix-valued) Mindlin function Lij(x, y), 1 Æ i, j Æ d,
is defined by the following.

• In 2D, the components Lij read:

L11(x, y) = ≠
1 ≠ ‹

fiµ
log|x ≠ y| + 3 ≠ 4‹

8fiµ(1 ≠ ‹) ,

L12(x, y) = ≠
1

2fiµ
(1 ≠ 2‹)�, where � =

I
fi

2 if x1 > y1,

≠
fi

2 otherwise,

L22(x, y) = ≠
1 ≠ ‹

fiµ
log|x ≠ y|,

(4.64)

where ‹ = ‹

1+‹
.

• In 3D, the components Lij read:

Lij(x, y) = 1 ≠ ‹

2fiµ|x ≠ y|
”ij + ‹

2fiµ

(xi ≠ yi)(xj ≠ yj)
|x ≠ y|3

, i, j = 1, 2,

L3j(x, y) = ≠
1 ≠ 2‹

4fiµ

xj ≠ yj

|x ≠ y|2
, j = 1, 2,

L33(x, y) = 1 ≠ ‹

2fiµ|x ≠ y|
.

(4.65)

We refer to [39] §2.8.2 for the 2D case and [238, 246] for the original derivation in 3D. Note that, in
the latter, the formulas may look di�erent, as the Green’s function is taken for the superior half-space
(which changes the sign of the components L13, L23, L31 and L32 of the tensor).

Remark 4.13. In essence, the Mindlin function describes the displacement field generated in an
infinite half-space when a concentrated force is applied at a point on or below the surface of the
half-space. This function is named after Raymond D. Mindlin, who developed the theory in [238] to
address problems in the field of elasticity, specifically in the context of half-space problems.

4.8.2 Replacement of homogeneous Neumann boundary conditions by homo-
geneous Dirichlet conditions

We consider the perturbed version of the elasticity problem (4.59) where the homogeneous Neumann
boundary conditions on �N are replaced by homogeneous Dirichlet boundary conditions on a small subset
ÊÁ µ �N , taking the form of a surface disk. The displacement uÁ of the considered structure in this
perturbed situation is the unique solution to the following boundary value problem:

Y
___]

___[

≠Ò · Ae(uÁ) = f in �,

uÁ = 0 on �D fi ÊÁ,

Ae(uÁ)nˆ� = g on �N ,

Ae(uÁ)nˆ� = 0 on � \ ÊÁ.

(4.66)

Our main result is the following.
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Theorem 4.7. Let 0 be a given point in �. Then the following asymptotic expansion holds:

uÁ,j(x) = u0(x) ≠
1

|log Á|

fiµ

1 ≠ ‹
u0(0) · Nj(x, 0) + o

3
1

|log Á|

4
if d = 2,

and
uÁ,j(x) = u0(x) ≠ ÁMu0(0) · Nj(x, 0) + o(Á) if d = 3.

In this formula, the polarization tensor M , whose entries read:

Mij =
⁄

D1

T ≠1
L

ej · ei ds, i, j = 1, 2, 3; (4.67)

this defintion involves the integral operator

TL : ÂH≠1/2(D1)d
æ H1/2(D1)d, TLÏ(x) =

⁄

D1

L(x, z)Ï(z) ds(z), x œ D1, (4.68)

whose kernel is the Mindlin function L(x, y) given in (4.64) and (4.65).

Remark 4.14.
The operator TL has a neat physical interpretation: when Ï : D1 æ Rd represents a force applied on
the unit disk D1, and TLÏ : D1 æ Rd is the induced displacement field. Hence, for j = 1, 2, 3, the
jth column of the polarization tensor is the force that needs to be applied on D1 to realize a unit
displacement in the direction ej . Interestingly, classical mechanical calculations in contact mechanics
boil down to those of some of the entries of this tensor, see for instance the so-called “flat punch” or
“indentation” problems in [45, 199, 214]. To the best of our knowledge, the complete calculation of
the tensor M is not available in the literature.

Remark 4.15. The definition of the polarization tensor M in (4.67) implicitly assumes that the
operator TL in (4.68) is invertible. To the best of our knowledge, this fact is not known in the
literature, and it is not a straightforward adaptation of the counterpart result in the setting of the
conductivity equation (see Proposition 4.3), and we proceed under the assumption that this fact holds
true.

Sketch of proof. Again, we rely on a formal calculation along the trail of Theorem 4.4, under the
assumption of that 0 = 0 and that the boundary is locally flat near 0 (see Fig. 4.6). Let us introduce the
error rÁ = uÁ ≠ u0 œ H1(�)d, which is the unique solution to the following boundary value problem:

Y
__]

__[

≠Ò · (Ae(rÁ)) = 0 in �,
rÁ = 0 on �D,

rÁ = ≠u0 on ÊÁ,
Ae(rÁ)n = 0 on �N fi (� \ ÊÁ).

(4.69)

Step 1. We construct a representation formula for the values rÁ.
To this end, we use the definition (4.62) of the Green’s function N(x, y) for the background elasticity

problem (4.59), which yields, for each component j = 1, . . . , d:

rÁ,j(x) = ≠

⁄

�
Òy · (Aey(Nj(x, y))) · rÁ(y) dy

= ≠

⁄

ˆ�
Aey(Nj(x, y))n(y) · rÁ(y) ds(y) +

⁄

�
Aey(Nj(x, y)) : e(rÁ)(y) dy.

Using the boundary conditions in (4.62) and (4.69) for the functions N(x, ·) and rÁ, as well as another
integration by parts, we obtain:

rÁ,j(x) = ≠

⁄

�
Ò · (Ae(rÁ))(y) · Nj(x, y) dy +

⁄

ˆ�
Ae(rÁ)(y)n(y) · Nj(x, y) ds(y).
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Using again the boundary conditions satisfied by rÁ in (4.69), we end up with

rÁ,j(x) =
⁄

ÊÁ

Ae(rÁ)(y)n(y) · Nj(x, y) ds(y).

By a change of variables in the above integral, we obtain the desired representation formula:

rÁ,j(x) =
⁄

D1

ÏÁ(z) · Nj(x, Áz) ds(z), (4.70)

where we have introduced the rescaled quantity:

ÏÁ(z) = Ád≠1
1

Ae(rÁ)n
2

(Áz) œ ÂH≠1/2(D1)d.

Step 2. We construct an integral equation characterizing the function ÏÁ(z). To achieve this, we rely
on the same calculations as above, except that we replace the di�cult Green’s function N(x, y) for the
background equation (4.59) with the Green’s function L(x, y) for the lower half space, with Neumann
boundary conditions on ˆH, see (4.64) and (4.65). As in the proof of Theorem 4.4, this yields the integral
equation:

’x œ D1,

⁄

D1

L(Áx, Áz) ÏÁ(z) ds(z) = ≠u0(Áx) + o(1). (4.71)

Step 3: We use this integral equation to glean information about the function ÏÁ(z). In two space
dimensions, using the expression (4.64) of L(x, y), this integral equation rewrites:

1 ≠ ‹

fiµ
(log Á)

⁄

D1

ÏÁ(y) ds(y) + KÏÁ(y) = ≠u0(Áx) + o(1),

where K : ÂH≠1/2(D1)d
æ H1/2(D1)d is a bounded operator. We directly obtain from this equation that:

⁄

D1

ÏÁ(y) ds(y) = 1
|log Á|

fiµ

1 ≠ ‹
u0(0) + o

3
1

|log Á|

4
, (4.72)

which is the needed information for our purpose.
In the case of three space dimensions, using the homogeneity of the kernel L(x, y) in (4.64) and (4.65),

(4.71) becomes:
TLÏÁ = ≠Áu0(0) + o(Á),

where the integral operator TL is defined in (4.68). This yields immediately:

ÏÁ =
3ÿ

j=1
u0,j(0)T ≠1

L
ej ,

and so: ⁄

D1

ÏÁ ds = Mu0(0). (4.73)

Step 4: We pass to the limit in the representation formula. As usual, applying the Lebesgue dominated
convergence theorem to the representation formula (4.70), we obtain:

rÁ,j(x) ¥

3⁄

D1

ÏÁ(z) ds(z)
4

· Nj(x, 0),

and the desired result follows from the combination of this identity with (4.72) and (4.73).
⌅

Let us consider again an objective function of the form:

J(G) =
⁄

�
j(uG) dx,

for a smooth function j : Rd
æ R, satisfying suitable growth conditions, see (4.23). Here, uG denotes the

solution to the boundary value problem (4.59) when the Dirichlet region �D is G. The result of interest
is the following.
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Corollary 4.4. The perturbed value J(G0,Á) of the functional J(G), accounting for the replacement
of the homogeneous Neumann boundary conditions on Ê0,Á µ � by homogeneous Dirichlet boundary
conditions, has the following asymptotic expansion:

J(G0,Á) = J(G) + 1
|log Á|

fiµ

1 ≠ ‹
u0(0) · p0(0) + o

3
1

|log Á|

4
if d = 2,

and
J(G0,Á) = J(G) + Á Mu0(0) · p0(0) + o(Á) if d = 3.

Here, the polarization tensor M is defined by (4.67) and the adjoint state p0 is the unique solution in
H1(�)d to the boundary value problem:

Y
]

[

≠Ò · Ae(p0) = ≠jÕ(u0) in �,
p0 = 0 on �D,

Ae(p0)n = 0 on �N fi �.
(4.74)

Remark 4.16. Like in the setting of Section 4.6, involving the conductivity equation, multiple
variations of the present study could be considered. For instance, one may be interested in accounting
for the e�ect of the replacement of homogeneous Neumann boundary conditions by inhomogeneous
Dirichlet or Neumann conditions, etc. Numerical examples associated to such variations are presented
in Sections 4.13 and 4.14.

4.9 Numerical resolution of singular boundary integral equations

As we have seen in the previous sections, the identification of the expression of our topological derivatives
at some point involves the resolution of a boundary integral equation, of the form:

Search for Ï œ ÂH≠1/2(D1) s.t. TLÏ(x) = f(x), x œ D1, (B)

where the integral operator TL : ÂH≠1/2(D1) æ H1/2(D1) is defined by:

TLÏ(x) =
⁄

D1

L(x, z)Ï(z) dz, (4.75)

L is a homogeneous kernel of class ≠1 (see (4.36), (4.53) and (4.65)), and f œ H1/2(D1) is a given
source. In fortunate cases, the solution to this equation can be computed analytically, such as the case
of the conductivity (see Theorem 4.4). When this is not the case, one needs to solve it numerically, see
Theorem 4.7. In this section, we aim to detail the numerical resolution of an integral equation of the
type (B). In the literature, this type of problem is usually known as a “screen” problem; the equation is
posed over an open surface (with boundary) rather than the whole boundary of a domain, which is a
closed surface. In general, the exact solutions to screen problems are expected to blowup at the boundary
of the surface, resulting in a lower degree of global regularity (see §4.1.11 in [283]). In particular, the
work [171] analyzes this exact problem, suggesting a Galerkin scheme along with numerical quadrature
formulas to achieve the successful numerical resolution of the problem, when the open surface is meshed
with rectangles.

The material that is presented in this section, is primarily inspired from the book [283], where the
authors present a way to work around the singularities of the function L(x, y) at x = y. Despite the
fact that we have the added complication of working on the open surface, we re-use their techniques at
the cost of introducing numerical artifacts of the solution, which we show how to remedy numerically in
Section 4.9.3.

For the interested reader, we recommend the works [197, 175] on solving boundary integral equations,
which provide in-depth analysis for general cases, including those where the kernel is non-singular.
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4.9.1 The Galerkin scheme
Following [174], our numerical solution hinges on the derivation of a Galerkin scheme for (G). Multiplying
(B) with an arbitrary function Â œ ÂH≠1/2(D1) and integrating, we obtain:

’Â œ ÂH≠1/2(D1),
⁄

D1

TLÏ(x)Â(x) ds(x) =
⁄

D1

f(x)Â(x) ds(x). (G)

As it turns out, regardless of the singularity at x = y the integral:
⁄

D1

TLÏ(x)Â(x) ds(x) =
⁄

D1

⁄

D1

L(x, y)Ï(x)Â(x) ds(y) ds(x),

is improperly integrable and admits a principal value. The numerical resolution of (G) can be carried
out by discretizing the spaces of functions ÂH≠1/2(D1). For some finite element space Vh µ ÂH≠1/2(D1),
supported on a triangulation T , the operator TL : Vh æ L2(D1) is a continuous mapping, since it maps
ÂH≠1/2(D1) continuously into H1/2(D1) [171]. This allows to decompose the integral in the left hand side
of (G) as: ⁄

D1

TLÏ(x)Â(x) ds(x) =
ÿ

·œT

⁄

·

TLÏ(x)Â(x) ds(x).

Now let · œ T , and define, the localized version of TL:

’x œ D1, T ·

L
Ï(x) := p.v.

⁄

·

L(x, y)Ï(y) ds(y). (4.76)

The following lemma guarantees that the localization of the operator is consistent; see §5.1.2 of [283].

Lemma 4.1. Let Ï œ LŒ(D1) and „|· œ C1(·) for all · œ T , then we have:

1. ’x œ · , T ·

L
Ï(x) is finite,

2. ’x /œ · , the principal value integral in (4.76) is a classical Riemann integral.

3. For all x œ D1, it holds:
TLÏ(x) =

ÿ

·œT

T ·

L
Ï(x) ds(x).

Corollary 4.5. Under the hypotheses of the previous lemma; it holds:

Â œ L2(D1),
⁄

D1

TLÏ(x)Â(x) ds(x) =
ÿ

·1,·2œT

A·1, ·2 ,

where the quantity A·1, ·2 is defined by:

A·1,·2 =
⁄

·1

Â(x)
3

p.v.

⁄

·2

L(x, y)Ï(y) ds(y)
4

ds(x).

4.9.2 Decomposition of singular integrals through relative coordinates
Let ·1, ·2 œ T . In this section we explain how to transform integrals of the form:

A·1,·2 =
⁄

·1

Â(x)
3

p.v.

⁄

·2

L(x, y)Ï(y) ds(y)
4

ds(x). (4.77)

in order to achieve their numerical computation. We rely on the so called relative coordinates, which
are commonly used to simplify the evaluation of singular integrals; see [283]. Singular integrals present
challenges because the integrand becomes unbounded or behaves irregularly at certain points within
the domain. By shifting the coordinate system to a reference system where the singularity occurs at
another position, relative coordinates simplify the integrand’s expression, making it easier to handle both
mathematically and numerically, thus improving numerical stability and accuracy.
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In our case every · œ T is the di�eomorphic image under of the reference element ·̂ µ R2 with
an a�ne transformation T· : ·̂ æ · . We assume that on each · we have a set of basis functions b·,i,
1 Æ i Æ n, so that the reference basis functions on the reference element ·̂ are given by b̂·,i = b·,i ¶ T·

(see [136]). This allows to discretize Ï and Â on each · as:

’x œ ·, Ï(x) =
nÿ

i=1
w·,i b·,i(x), Â(x) =

nÿ

i=1
w·,i b·,i(x).

Next, we pullback (4.77) onto the reference elements to further write:

A·1,·2 =
ÿ

·1,·2œT

nÿ

i,j=0
w·1,jw·2,i Âij

·1,·2 g·1,·2(x̂, ŷ),

Âij

·1,·2 :=
⁄

·̂1

p.v.

⁄

·̂2

kij(x̂, ŷ) dŷ dx̂,

kij(x̂, ŷ) :=
!
L (T·1(x̂), T·2(ŷ)) b̂·2,j(ŷ)

"
b̂·1,i(x̂)

g·1,·2(x̂, ŷ) :=
Ò

det
!
ÒT T

·1(x̂)ÒT·1(x̂)
" Ò

det
!
ÒT T

·2(ŷ)ÒT·2(ŷ)
"
.

(4.78)

Remark 4.17. From the implementation point of view, the quantity Âij

·1,·2 represents the contribution
of ·1 and ·2 to the (i, j)-th entry of the global sti�ness matrix, while the quantiy g·1,·2(x̂, ŷ) represents
the volume distortion at the points x, y.

Now, we exploit the explicit nature of the reference element on which the integration is performed.
We can distinguish between four cases when it comes to calculating (4.78):

1. ·1 = ·2,

2. ·1 and ·2 share a common edge,

3. ·1 and ·2 share a common vertex,

4. ·1 fl ·2 = ÿ .

In general, deriving the regularized form of the integral A·1,·2 is quite tedious and complicated, as
it involves a non-trivial decomposition of the integration domain. Since this procedure is already well
documented in [283, 176], we will simply state the formulas for the case where the reference element is
the unit triangle, as illustrated in Fig. 4.7, given by the parametrization:

·̂ = {(x, y) œ R2
| 0 Æ x Æ y Æ 1}.

Let us mention that, in what follows, the decompositions for Âij

·1, ·2 are numerically integrable via standard
Gauss quadrature methods on the unit interval (0, 1); see, for example, [111, 283] for a general overview
or [166] for the quadrature formulae calculation.
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Figure 4.7: Illustration of the unit triangle considered.

Case 1: ·1 = ·2

The integral Â·, · is decomposed as follows:

Âij

·1, ·2 =
⁄

(0, 1)4
›3÷2

1÷2

A 6ÿ

l=1
kij(›xl, ›yl)

B
d÷1 d÷2 d÷3 d›,

where xl and yl are functions of ÷1, ÷2, ÷3, defined by:

x1 = (1, 1 ≠ ÷1 + ÷1÷2), y1 = (1 ≠ ÷1÷2÷3, 1 ≠ ÷1),
x2 = (1 ≠ ÷1÷2÷3, 1 ≠ ÷1), y2 = (1, 1 ≠ ÷1 + ÷1÷2),
x3 = (1, ÷1(1 ≠ ÷2 + ÷2÷3)), y3 = (1 ≠ ÷1÷2, 1 ≠ ÷1÷2),
x4 = (1 ≠ ÷1÷2, ÷1(1 ≠ ÷2)), y4 = (1, ÷1(1 ≠ ÷2 + ÷2÷3)),
x5 = (1 ≠ ÷1÷2÷3, ÷1(1 ≠ ÷2÷3)), y5 = (1, ÷1(1 ≠ ÷2), )
x6 = (1, ÷1(1 ≠ ÷2)), y6 = (1 ≠ ÷1÷2÷3, ÷1(1 ≠ ÷2÷3)).

Case 2: ·1 and ·2 share a common edge

The integral Â·1, ·2 can be decomposed as follows:

Âij

·1, ·2 =
⁄

(0, 1)4

A
›3÷2

1kij(›x1, ›y1) + ›3÷2
1÷2

A 5ÿ

l=2
kij(›xl, ›yl)

BB
d÷1 d÷2 d÷3 d›,

where xl and yl are functions of ÷1, ÷2, ÷3, defined by:

x1 = (1, ÷1÷3), y1 = (1 ≠ ÷1÷2, ÷1(1 ≠ ÷2)),
x2 = (1, ÷1), y2 = (1 ≠ ÷1÷2÷3, ÷1÷2(1 ≠ ÷3)),
x3 = (1 ≠ ÷1÷2, 1 ≠ ÷2), y3 = (1, ÷1÷2÷3),
x4 = (1 ≠ ÷1÷2÷3, ÷1÷2(1 ≠ ÷3), y4 = (1, ÷1),
x5 = (1 ≠ ÷1÷2÷3, ÷1(1 ≠ ÷2÷3), y4 = (1, ÷1÷2)

Case 3: ·1 and ·2 share a common vertex

The integral Â·1, ·2 can be decomposed as follows:

Âij

·1, ·2 =
⁄

(0,1)4
›3÷2 (kij(›x1, ›y2) + kij(›x2, ›y2)) d÷1 d÷2 d÷3 d›
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where xl and yl are functions of ÷1, ÷2, ÷3, defined by:

x1 = (1, ÷1), y1 = (÷2, ÷2÷3),
x2 = (÷2, ÷2÷3), y2 = (1, ÷1).

Case 4: ·1 fl ·2 = ÿ

If ·1 and ·2 are disjoint, the integral can be approximated via standard Gaussian quadrature, and there
is no need to employ relative coordinates.

4.9.3 Regularization of the variational problem
Unfortunately, the solution of the variational problem (G) incurs numerical artifacts, which are mainly due
to the fact that the solution Ï to (B) is expected to blow up near the boundary ˆD1, see [307, 306, 305]
about this general behavior. To illustrate this point, let us consider the following concrete example; see
[95] or [194]. Let the function Ï œ ÂH1/2(D1) be defined by:

’((x1, x2), 0) œ D1, Ï(x) = 4
fi


1 ≠ |x|2

.

As we have seen in (4.46), this function satisfies the following properties:

1
4fi

⁄

D1

1
|x ≠ y|

Ï(y) ds(y) = 1, and
⁄

D1

Ï(x) ds(x) = 8,

In this case, attempting to recover Ï via the numerical resolution of the variational problem:

’Â œ ÂH≠1/2(D1),
⁄

D1

1
4fi

⁄

D1

1
|x ≠ y|

Ï(y)Â(x) ds(y) ds(x) =
⁄

D1

Â(x) ds(x)

yields the noisy discretized solution Ï̂, shown in Fig. 4.8b. We can compare this to the truncated graph
of the exact solution Section 4.9.3, to see that the numerical solution is of poor quality.

It turns out, that a simple regularization of problem (G) eventually remedies this problem. Let us
indeed consider the regularized problem:

’Â œ ÂH≠1/2(D1), a÷(Ï÷, Â) +
⁄

D1

TLÏ(x)Â(x) ds(x) =
⁄

D1

f(x)Â(x) ds(x).

where ÷ > 0 is some a regularization parameter and a÷(·, ·) is a regularizing bilinear form. In the particular
case being analyzed, we choose:

a÷(Ï, Â) := ÷

⁄

D1

ÒÏ · ÒÂ ds(x),

so that the problem reduces to:

’Â œ ÂH≠1/2(D1), ÷

⁄

D1

ÒÏ÷(x) · ÒÂ(x) +
⁄

D1

1
4fi

⁄

D1

1
|x ≠ y|

Ï÷(y)Â(x) ds(y) ds(x) =
⁄

D1

Â(x) ds(x).

4.9.4 Numerical validation
To numerically validate our approach, we define three metrics that depend on the maximum mesh size h
and the parameter ÷. These metrics are:

1. The squared error of the resolution.

R(h, ÷) :=
⁄

T

3
1

4fi

⁄

T

1
|x ≠ y|

Ï̂÷ dy ≠ 1
42

dx,

which calculates the discrepancy between the potentials generated by the numerical and exact
equations.
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(a) Mesh T representing a discretization of D1.

(b) Plot of the unregularized numerical solution Ï̂, truncated to zero near the
boundary. The upper image shows the positive values while the bottom image
the negative values. The colorbar on the right represents the values attained by
the function on the vertices of the mesh.

Figure 4.8: Numerical discretizations of D1 and numerical solution associated to the boundary integral
equation problem (G).
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(a) Exact solution Ï truncated to a subset smaller than the unit disk.

(b) Regularized numerical solution Ï̂÷ truncated to a subset smaller
than the unit disk.

Figure 4.9: Numerical plots of the function Ï and the regularized solution Ï̂÷. Both plots are truncated
to the same area to showcase their behavior on the interior, and not at the edge of the disk where both
solutions blow up to infinity. Here ÷ = 1e ≠ 5, h = 0.1.
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2. The squared error of the average.

A(h, ÷) :=
3⁄

T

Ï̂÷ dx ≠ 8
42

,

which measures the discrepancy beteween the averages of the exact and numerical solutions.

3. The squared approximation error.

E(h, ÷) :=
⁄

{|x|<0.9, xœT }

(Ï̂÷ ≠ Ï)2 dx,

which quantifies the error between the numerical and exact solutions.

The region |x| < 0.9 is chosen in the third metric because the exact solution Ï becomes singular at
the boundary.

For our experiments, we use P1 finite elements and we evaluate the metrics on 50 uniformly spaced
values along the intervals 0.00001 < ÷ < 0.1 and 0.1 < h < 1, respectively. We plot the results on a graph
as a function of both parameters in Fig. 4.10. In all of the plots, as ÷ and h go down to zero, all the
quantities tendo to 0. Note that, in Fig. 4.10b the regularization parameter ÷ should not be taken too
small when compared to the mesh size, to obtain a good approximation.

4.9.5 Extension to the vector-valued case
The previous method can be straightforwardly adapted to an integral equation featuring a vector-valued
function. As is the case in Section 4.8, one seeks to solve an integral equation of the type:

TLÏ(x) =
⁄

D1

L(x, y)Ï(y) ds(y),

where this time the kernel function L(x, y) represents a matrix operator and the sought function Ï is now
vector-valued. A similar Galerkin method as that in Section 4.9.1 is used to decompose the integrals on
the reference elements. Employing similar arguments, TL is decomposed into:

⁄

D1

TLÏ(x)Â(x) ds(x) =
ÿ

·1,·2œT

A·1, ·2 ,

where the vector-valued quantity A·1, ·2 is defined by:

A·1,·2 =
⁄

·1

Â(x)
3

p.v.

⁄

·2

L(x, y)Ï(y) ds(y)
4

ds(x).

In this case the corresponding functions, kij : D1 ◊ D1 æ Rd defined in (4.78) are written analogously
in terms of the matrix product:

kij(x, y) =
Ë
L (T·1(x̂), T·2(ŷ)) b̂·2,j(ŷ)

È
· b̂·1,i(x̂) g·1,·2(x̂, ŷ),

so that we can re-utilize the same integration rules described in the end of Section 4.9.2. Similar to the
previous section, we validate our approach utilizing the Mindlin kernel in 3D (4.65) from Section 4.8.
We only look at the resolution error R(h, ÷), since neither the value for the average or a exact solution
is known analytically, to the best of our knowledge. This time we seek to solve the regularized vector
valued problem:

’Â œ H1/2(D1)d, a÷(Ï÷, Â) +
⁄

D1

TLÏ÷(x) · Â(x) ds(x) =
⁄

D1

f(x) · Â(x) ds(x).

In general, we have found that choosing the bilinear form for the elasticity equation as the regularizing
term, yielded the best numerical results.

a÷(Ï, Â) := ÷

⁄

D1

Ae(Ï) : e(Â) ds(x)
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(a) Plot of the numerical resolution error R(h, ÷).

(b) Plot of the numerical error of the average A(h, ÷).

Figure 4.10: Plots of the numerical errors defined in Section 4.9.4. In each plot, the h, ÷ and error values
have been scaled logarithmically.
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(c) Plot of the numerical squared approximation error E(h, ÷).

Figure 4.10: (cont.) Plots of the numerical errors defined in Section 4.9.4. In each plot, the h, ÷ and
error values have been scaled logarithmically.

For our experiments, we have divided the intervals 0.5 < h < 1 and 0.00001 < ÷ < 0.1 into 50 uniformly
spaced points. Furthermore, we have chosen the physical parameters µ = 67.5676 and ‹ = 0.48. We
conduct three experiments, for f = ei, i = 1, 2, 3, representing the canonical directions of Rd. The error
plots are presented in Fig. 4.12 while the plots of the solutions when h = 0.5, ÷ = 0.00001 is shown in
Fig. 4.11.

The error behaves like in the previous section. As both parameters h and ÷ decrease, so does the error.
Analyzing the solution plots, one can see that the solution „÷ e1 and e2 are the same, but rotated by a 90
degree angle. On the other hand, the solution plot for e3 di�ers from the previous two and furthermore it
is totally symmetric, just like the solution plot of the scalar case in Section 4.9.3. This is to be expected,
since the kernel L is anisotropic in the third row of its entries.
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(a) Plot of the numerical resolution error R(h, ÷) when solving for e1.

(b) Plot of the numerical resolution error R(h, ÷) when solving for e2.

Figure 4.11: Plots of the resolution error R(h, ÷) for di�erent right hand sides. In each plot, the h, ÷ and
error values have been scaled logarithmically.
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(c) Plot of the numerical resolution error R(h, ÷) when solving for e3.

Figure 4.11: (cont.) Plots of the resolution error R(h, ÷) for di�erent right hand sides. In each plot, the
h, ÷ and error values have been scaled logarithmically.
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(a) Plot of the solution when f = e1.

(b) Plot of the solution when f = e2.

Figure 4.12: Plots of the approximated solutions for di�erent values of f .
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(c) Plot of the solution when f = e3.

Figure 4.12: (cont.) Plots of the approximated solutions for di�erent values of f .
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4.10 Numerical method
Following the previous sections, we can see the results follow exactly the structure of (4.20):

J(Gx0,Á) = J(G) + fl(Á)dT (G)(x0) + o(fl(Á)).

for a combination of fl(Á) and dT (G)(x0). Consistent with the methods discussed in Chapter 3, we can
add a topological step to Algorithm 3 to account for the topological derivative dT into the boundary
optimization process.

Practically speaking, if we suppose we have a finite element space discretization over a mesh T , we
can loop over all the nodes associated with the degrees of freedom to interpolate this function. Then we
select the most negative value. In particular, for continuous P1 elements, we just need to loop over the
mesh vertices and find the greatest negative value. At this negative value, we would nucleate a small hole
of radius Á > 0. If there are no negative values, then we know that we are at a local minimum, and we
don’t add a new region.

The full shape and topology optimization algorithm is detailed in Algorithm 4.

Algorithm 4: Shape and topology optimization of the region G µ ˆ�.
Input: Mesh T

0 of �, whose discretized boundary B
0 contains two submeshes B

0
int of G0, and

B
0
ext of ˆ� \ G0.

for n = 0, . . . , N ≠ 1 do
1. Compute the signed distance function dˆ�

Gn to Gn at the vertices of the mesh B
n of ˆ�.

2. Infer a descent direction from ◊n using the approximated shape derivative expression J Õ
Á
(Gn)(◊),

solving the state equation and adjoint equation if necessary.

3. Find the point c0 of greatest topological decrease:

c0 = arg max
x0œˆ�

|dT (G)(x0)| s.t. dT (G)(x0) < 0.

and nucleate a small hole Êc0,r of radius r > 0 by setting the level set function dˆ�
Gn(x) Ω 0 for

x œ Êc0,r.

4. Solve the advection equation for a fixed time-step �t > 0:
;

ˆ„

ˆt
(t, x) + ◊n(x) · Òˆ�„(t, x) = 0 for (t, x) œ (0, �t) ◊ ˆ�,

„(0, x) = dˆ�
Gn(x) for x œ ˆ�,

on the total mesh B
n of ˆ�. A new level set function „n+1 = „(�t, ·) is obtained for

Gn+1 =
)

x œ ˆ�, „n+1(x) < 0
*

.

5. From the datum of „n+1 at the vertices of B
n, create a new, high-quality mesh B

n+1 of ˆ� made of
two submeshes B

n+1
int and B

n+1
ext for Gn+1 and ˆ� \ Gn+1, respectively.

end
Output: Mesh T

N whose discretized boundary B
N contains an explicit discretization B

N

int of GN .

4.11 Optimization of the repartition of cathode-anode regions
for a direct current electroosmotic mixer

Our first applicative instance of optimal design problems featuring boundary condition regions is motivated
by the field of microfluidics, which investigates the handling of very small volumes of fluid, ranging
between 10≠18 to 10≠9 L. This practice has aroused a tremendous enthusiasm over the last 20 years,
heralding decisive advances in analytical chemistry, molecular biology and biomedical engineering (design
of biochips and DNA micro-arrays, electrophoresis and liquid chromatography for proteins and DNA),
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optics (design of microlens arrays), etc. We refer to e.g. [249, 308] for comprehensive introductions to
this subject and its challenges.

Among the various operations of interest in this context, that of fluid mixing in microchannel is
particularly crucial, and one method of choice in this perspective is electroosmosis [81, 217, 269, 282, 344].
This process consists in applying an electric field on a liquid-filled channel – thus leveraging the Coulomb
force to electrically actuate the charged particles and ions within the fluid and triggering the pumping of
electrolytic fluid through drag forces. The configuration and placement of electrode pairs, whose induced
charges interact with the fluid, play a pivotal role in determining the electric field and the resulting
fluid-dynamic velocity distribution.

In this section, we seek to optimize the design of an electroosmotic mixer (EMM). This device mixes
two fluids by leveraging the electroosmosis phenomenon. It consists of three parts: the inflow compartment,
the mixing chamber, and the outflow compartment. See the schematic in Fig. 4.13. Additionally, the
surface of this device can be designed so that certain regions are positively charged (anode) and others
are negatively charged (cathode). Our goal is to optimize the placement and geometry of these regions to
enhance the mixing e�ciency.

Figure 4.13: Illustration of an electrosmootic mixer. Two fluids (represented by blue/red arrows) go in via
the inflow compartment, they get mixed in the mixing chamber which has a specific boundary repartition
of anode and cathode regions. The final fluid (represented by purple arrows) goes out via the outflow
compartment.

Our study relies on a simplified version of the model presented in [118]. Briefly, a stronger electrical
potential results in a higher electrokinetic force within the channel, inducing more e�cient disturbnces
and chaotic advection in the microflow. We thus aim to optimize the placement of electrodes to maximize
the electric field |Òu|

2 on the surface of the mixer. This approach di�ers from [118], which focuses on
integrating the Navier-Stokes equations into the physical model and optimizing the “quality” of the final
fluid.

4.11.1 The optimization problem
We rephrase the problem above into a shape and topology optimization problem in the mathematical
setting. In this context, the EMM is represented by a bounded Lipschitz domain � µ R3, whose boundary
is decomposed into three disjoint pieces: ˆ� = �A fi �C fi �, where:

• The region �C is the cathode, where the voltage potential is set to 0 zero;

• The region �A is the anode, where a value uin ”= 0 is imposed;
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• The device is perfectly insulated from the remaining region �.

We assume that the �C and �A are far away from each other in the sense that:

’Á > 0, dist(�C , �A) > 0.

For generality, we consider the minimization of the shape functional:

min
�C ,�Aµˆ�

J(�C , �A), where J(�C , �A) =
⁄

�
j(ÒuA,C) dx, (4.79)

whose integrand j œ C1(Rd, R) satisfies appropriate growth conditions:

÷C > 0, ’› œ Rd, |j(›)| Æ C(1 + t2), |jÕ(›)| Æ C(1 + |›|), and |jÕÕ(›)| Æ C.

The criterion (4.79) depends on the gradient Òu of the solution u to the boundary value problem:

Y
_____]

_____[

≠Ò · (“ÒuA,C) = 0 in �,

uA,C = 0 on �C ,

uA,C = uin on �A,

“
ˆuA,C

ˆnˆ�
= 0 on �,

(4.80)

for a given input voltage uin œ L2(ˆ�).

4.11.2 The shape derivative

It turns out that the boundary value problem (4.80) is weakly singular at the transition zones �C =
ˆ�C fl ˆ� and �A = ˆ�A fl ˆ�, where the boundary conditions change from the homogeneous Neumann
condition to a Dirichlet condition. As described in Section 4.2, we can smooth out these transition zones
by using a Robin boundary condition. The exact problem can then be reformulated into an approximate
version:

min
�C ,�Aµˆ�

JÁ(�C , �A), where JÁ(�C , �A) =
⁄

�
j(ÒuA,C,Á) dx (4.81)

subject to:
;

≠Ò · (“ÒuA,C,Á) = 0 in �,

“ ˆuA,C,Á

ˆnˆ�
+ (hC,Á + hA,Á)uA,C,Á ≠ hA,Áuin = 0 on ˆ�.

(4.82)

In this formulation, the cuto� function hA,Á : ˆ� æ R is defined by:

’x œ ˆ�, hA,Á(x) = 1
Á

h

A
dˆ�

�A
(x)

Á

B
,

where dˆ�
�A

denotes the signed distance function to �A on ˆ�, and h œ CŒ(R) satisfies (4.8). The case
for the cuto� function hC,Á is defined analogously. Additionally, the weak formulation for the solution
uA,C,Á œ H1(�) to (4.82) is:

’v œ H1(�),
⁄

�
“ÒuA,C,Á · Òv dx +

⁄

ˆ�
(hC,Á + hA,Á) uA,C,Áv ds =

⁄

ˆ�
hA,Áuinv ds.

We can then compute the shape derivative of the approximated criterion JÁ(�C , �A), along with the
simplified formulas derived similarly to those in Section 4.2. The proof can be found in Appendix A.2.1.
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Proposition 4.4. The criterion JÁ(�C , �A) is shape di�erentiable at ◊ = 0 (with ◊ · nˆ� = 0), and
its shape derivative reads:

J Õ

Á
(�C , �A)(◊) = 1

Á2

⁄

ˆ�
hÕ

A
dˆ�

�A

Á

B
◊(fi�A) · n�A(fi�A)(uin ≠ uA,C,Á) pA,C,Á ds

≠
1
Á2

⁄

ˆ�
hÕ

A
dˆ�

�C

Á

B
◊(fi�C ) · n�C (fi�C ) uA,C,Á pA,C,Á ds,

where pA,C,Á œ H1(�) is the weak solution to the following equation:
Y
]

[

≠Ò · (“ÒpA,C,Á) = Ò · jÕ(ÒuA,C,Á) in �,

“
ˆpA,C,Á

ˆnˆ�
+ (hC,Á + hA,Á)pA,C,Á = ≠jÕ(ÒuA,C,Á) · nˆ� on ˆ�.

Using the same procedure as outlined in Section 4.2.3, we can derive approximate formulas that
conform to the typical Hadamard structure described in (4.4). Assuming that the regions around �C and
�A are flat, and that the solutions uA,C,Á and pA,C,Á remain constant along the rays in these regions, we
can obtain the following approximate formula:

J Õ

Á
(�C , �A)(◊) = 1

Á

⁄

�A

(uin ≠ uA,C,Á) pA,C,Á ◊ · n�A ds ds ≠
1
Á

⁄

�C

uA,C,Á pA,C,Á ◊ · n�C .

4.11.3 The topological derivative
The criterion considered in this section is slightly di�erent from the criterion Section 4.3, since it depends
on the gradient of the solution to (4.79). This poses no problem as we are about to see that it is
straightforward to adapt the analysis to the case where j is a function whose domain is Rd. In this context,
the solution uA,C to (4.80) is the background solution. We consider two perturbations uC,Á, uA,Á œ H1(�)
solutions to:

Y
_____]

_____[

≠Ò · (“ÒuC,Á) = 0 in �,

uC,Á = 0 on �C fi ÊÁ,

uC,Á = uin on �A,

“
ˆuC,Á

ˆnˆ�
= 0 on � \ ÊÁ,

Y
_____]

_____[

≠Ò · (“ÒuA,Á) = 0 in �,

uA,Á = 0 on �C ,

uA,Á = uin on �A fi ÊÁ,

“
ˆuA,Á

ˆnˆ�
= 0 on � \ ÊÁ.

The solution uC,Á corresponds to the topological perturbation of the cathode area, and uA,Á corresponds
to the perturbation of the anode area. Let us perform the analysis for the case where we seek to replace
ÊÁ µ � with �A. The case for the cathode region �C is analogous. As in the analysis performed in
Section 4.3, applying the fundamental theorem of calculus yields:

j(ÒuA,Á) = j(uA,C) +
⁄ 1

0
jÕ(ÒuA,C + t(ÒuA,Á ≠ ÒuA,C)) · Ò(uA,Á ≠ uA,C) dt.

The twice continuous di�erentiability of j allows us to expand the function t ‘æ jÕ(ÒuA,C +tÒ(uA,Á≠uA,C))
at t = 0:

jÕ(ÒuA,C + tÒ(uA,Á ≠ uA,C)) = jÕ(ÒuA,C) + tjÕÕ(ÒuA,C) · Ò(uA,Á ≠ uA,C) + o(t|ÒuA,Á ≠ uA,C |).

If we define rA,Á := uA,Á ≠ uA,C , we look for an asymptotic of the following quantity:
⁄

�
jÕ(ÒuA,C) · ÒrA,Á dx =

⁄

ˆ�
rA,Á jÕ(ÒuA,C) · nˆ� ds(x) ≠

⁄

�
rA,ÁÒ · jÕ(ÒuA,C) dx.

In this manner, we have the following proposition for both cases where � is replaced with either �C

or �A. The proof is very similar to that of (4.47), with only the adjoint solution p having a di�erent
characterization, and thus it is omitted.
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Proposition 4.5. Let x0 œ � be a given point. Then,

(i) The perturbed criterion J((�C)x0,Á, �A), accounting for the addition of the surfacic disk Êx0,Á µ �
to �C , has the following asymptotic expansion:

J((�C)x0,Á, �A) =

Y
]

[
J(�C , �A) ≠ fi

| log Á| “(x0) uA,C(x0) pA,C(x0) + o
3

1
| log Á|

4
if d = 2,

J(�C , �A) ≠ 4Á “(x0) uA,C(x0) pA,C(x0) + o(Á) if d = 3.

(ii) The perturbed criterion J(�C , (�A)x0,Á), accounting for the addition of Êx0,Á µ � to �A, has
the following asymptotic expansion:

J(�C , (�A)x0,Á) =

Y
]

[
J(�C , �A) + fi

| log Á| “(x0) (uin ≠ uA,C(x0)) pA,C(x0) + o
3

1
| log Á|

4
if d = 2,

J(�C , �A) + 4Á “(x0) (uin ≠ uA,C(x0)) pA,C(x0) + o(Á) if d = 3.

In the above, the adjoint state pA,C œ H1(�) denote the solution to the following boundary value
problem: ;

≠Ò · (“ÒpA,C) = Ò · (jÕ(ÒuA,C)) in �,

“ ˆpA,C

ˆn
= ≠jÕ(ÒuA,C) · n on ˆ�.

4.11.4 Experiment setup
We focus on maximizing the voltage potential, as motivated at the beginning of this section. The shape
optimization problem is formulated as follows:

max
�A,�C µˆ�

⁄

�
|“ÒuA,C |

2 dx ≠ ¸1 Area(�A) ≠ ¸2 Area(�C),

where uA,C is the solution to (4.82), and ¸1, ¸2 > 0 are weak penalization parameters for the surface area
of the anode and cathode regions, respectively.

We also consider the case where the contours of both regions �A and �C are penalized:

max
�A,�Cµˆ�

⁄

�
|“ÒuA,C |

2 dx ≠ ¸1 Area(�A) ≠ ¸2 Area(�C) ≠ ¸3 Cont(�A) ≠ ¸4 Cont(�C),

where ¸3 > 0 and ¸4 > 0 are penalization parameters for the contours of the anode and cathode regions,
respectively.

The domain � is represented by a tetrahedral mesh T , consisting of 29k vertices and 135k tetrahedrons,
as illustrated in Fig. 4.14. This mesh includes a composite structure formed by the union of a torus, with
a major radius R = 10 u and a minor radius r = 5 u, along with inflow/outflow rectangular compartments.
Here, u denotes a spatial unit of length. In the broader literature [81, 347, 195], this configuration is
often referred to as a “ring” EMM due to the torus at its center. This design is widely adopted in the
field, which is why we selected it. Additionally, its non-flat geometry makes it an interesting example for
testing our boundary optimization technology. The optimization is carried through Algorithm 4, utilizing
the shape derivative of J Õ(�A, �C), Area, and Cont. The topological derivative is that one inferred from
Proposition 4.5.

For our tests, we fixed the anode region on the upper part of the inflow/outflow chambers, the cathode
region on the lower part, and the inflow/outflow regions. These regions were not subject to optimization,
meaning no topological or geometrical changes were made to them. In contrast, the remaining boundary
was subject to the nucleation and geometrical optimization of anode/cathode regions. Throughout the
process, we alternated between the evolution of �A and �C . Specifically, in each iteration, either the
domain �A or �C (but not both) was deformed according to the procedure described in Chapter 3. We
conducted three experiments, with the numerical parameter values shown in Table 4.1. In all experiments,
new topological regions are added every 10 iterations, continuing until 100 iterations are reached, after
which only geometric optimization is performed.

4.11.5 Analysis of results
The snapshots (Fig. 4.15) from the first experiment (without contour penalization) reveal an intriguing
behavior. Topologically, the method tends to create opposing regions on opposite sides of the mixer.
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Parameter Value
Á 0.001
¸1 0.0001
¸2 0.0001
¸3 0
¸4 0
– 4

hmax 0.05
hmin 0.005

(a) Experiment 1.

Parameter Value
Á 0.001
¸1 0.001
¸2 0.001
¸3 0
¸4 0
– 4

hmax 0.05
hmin 0.005

(b) Experiment 2.

Parameter Value
Á 0.001
¸1 0.001
¸2 0.001
¸3 0.001
¸4 0.001
– 4

hmax 0.05
hmin 0.005

(c) Experiment 2.

Table 4.1: Values of the parameters used in the optimization process.

Initially, it forms an anode region on the upper side and a corresponding cathode region on the lower side,
positioned directly across the middle. As the algorithm progresses, it stops introducing new regions and
instead focuses on geometrical optimization. This leads to the expansion of the existing regions, which
gradually attempt to cover the entire upper and lower sides of the mixer while maintaining a separation
between them. Eventually, the anode and cathode regions nearly encompass the upper and lower sides,
respectively. At this stage, the challenge shifts to homogenizing the design, resulting in a maze-like
structure. The homogenization of the design is not a new phenomenon; it is a common occurrence in
these types of scenarios, especially when dealing with the Poisson equation in the context of thermal
cooling (see, for instance, Section 4.2.4). For this experiment, the final mesh consists of approximately 5
million tetrahedrons.

In the second experiment (Fig. 4.16), we use a larger area penalization parameter. This results in
disjoint structures that remain separate throughout the process. Similar to the previous experiment,
branches appear, resembling the structures discussed in Section 4.2.4, which is expected given the similarity
of the problems being modeled. However, the branches are more separated due to the higher penalization
parameter. Additionally, as in the previous experiment, the top and bottom regions of the mixer do not
converge, as maintaining their separation proves advantageous. The final mesh consists of 1.8 million
tetrahedron, less than the first experiment due to the less intricate patterns that need meshing.

For the third experiment (Fig. 4.17), we utilize a contour penalization on both regions, while utilizing
the same area penalization as that of the second experiment. Instantly, one can see that the patterns are
way less simpler and present fewer branches, due to the penalization. The final mesh also consists of 1.8
million tetrahedron, similar to the first experiment.
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Figure 4.14: Di�erent view angles of the tetrahedral mesh T employed in the simulations. The red
and pink regions correspond to the anode and cathode regions, respectively, which are fixed and not
subject to optimization. The green region represents the flow region, which is also fixed and not subject
to optimization. The remaining region corresponds to the insulated region (homogeneous Neumann
boundary), which will be subject to optimization.
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(a) i = 40 (b) i = 80

(c) i = 120 (d) i = 160

(e) i = 120

Figure 4.15: Snapshots of the optimization process of the boundary repartition. Here i indicates the
number of iterations that have passed. The blue color corresponds to the cathode region and the orange
color the anode region.
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(f) i = 245 (g) i = 245 (no mesh lines)

(h) Perspective top view of the EMM. (i) Perspective bottom view of the EMM.

(j) Evolution of the objective criterion J(�)

Figure 4.15: (cont.) Snapshots of the optimization process of the boundary repartition. In figures (g) and
(h) the perspective of the design is shown in order to better appreciate the repartition of the boundary.
In figure (i), the evolution of the criterion as a function of each iteration.
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Figure 4.16: Results of the optimization process for the second experiment.
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Figure 4.17: Results of the optimization process for the third experiment.
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4.12 Optimization of sound-soft regions on the surface of a
sound-hard obstacle for acoustic cloaking

(a) Illustration of the mathematical setup for the scattering
problem.

(b) Artistic rendition of the scattering
problem for an aircaft.

Figure 4.18: In the figure, the obstacle � is shown immersed within the medium D. The fictional boundary
� is where the Sommerfeld radiation condition is imposed, and it depicts the incident wave f and the
scattered wave u.

In acoustics, the scattering e�ect occurs when an incident wave (e.g. a sound wave) hits an obstacle
or a discontinuity in the propagation medium. This interaction causes the wave to be scattered, i.e.
deflected, absorbed, or transmitted in various directions. Depending on the application, this e�ect is
either considered fortunate or undesirable. In particular, it is testament of the presence of an obstacle,
which one would rather try to hide, e.g. in military applications. Acoustic cloaking is a technique that
creates a shell around an object to manipulate sound waves, allowing them to pass through and around
the cloak without scattering, thus rendering both the cloak and the object invisible to acoustic detection.
Various types of acoustic cloaking exist, most of which depend on developing metamaterials with specific
physical properties, see e.g. the review article [252] about this subject.

Passive acoustic cloaking has received significant attention in recent years, see e.g. [167, 168, 210,
170, 65]. This strategy essentially aims to shrink the object and cloak from the observer’s viewpoint,
making the object appear vanishingly small. From an optimal design perspective, the preliminary works
[331, 265] sought to optimize the parameters of the various acoustic metamaterial layers that compose an
acoustic cloak, rather than the structure of the cloak itself. These approaches achieved better results
with less complexity compared to the traditional schemes such as those described in [252]. In a physical
context similar to ours, recent studies such as [337, 157, 229] have tackled this problem through density
optimization, focusing on optimizing the structure surrounding the object for a specific material. These
methods typically aim to minimize the norm of the sound pressure of the scattered wave, often using the
Helmholtz equation or its variants.

In the present section, we propose to optimizing the constituent material of (the boundary of) the
obstacle itself to make it invisible to detection, rather than the surrounding region. To achieve this,
we adapt the model presented in [94]. In that study, the authors address a two-dimensional acoustic
scattering problem in an inhomogeneous medium, with water as the background fluid and a cloaking
region modeled as an inhomogeneous yet isotropic equivalent fluid. Their goal is to minimize the mean
squared amplitude of the acoustic scattered pressure field. In the following sections, we present the
physical model and specify the objective criterion.

4.12.1 The scattering problem
We consider an obstacle � µ Rn with a C2 boundary ˆ� immersed in a fluid. When the system
is subjected to time harmonic waves, the steady-state acoustic pressure P (x, t) can be expressed as

152



4.12. OPTIMIZATION OF SOUND-SOFT REGIONS ON THE SURFACE OF A SOUND-HARD
OBSTACLE FOR ACOUSTIC CLOAKING

Re
!
a(x)eikt

"
, where the complex amplitude a(x) œ C satisfies the Helmholtz equation in free space for

inhomogeneous media:
≠Ò · (“(x)Òa(x)) = Ê2a(x), x œ Rn, (4.83)

where Ê œ C is the angular frequency of the wave and “ œ C0(Rn) indicates the specific volume of the
fluid.

Remark 4.18. In terms of the angular wavenumber, the angular frequency can be decomposed into:

Ê = 2fi

⁄
v

where ⁄ > 0 denotes the wavelength and v indicates the phase velocity.

Given an incident wave field f , we suppose that the pressure field is the superposition of two pressure
fields away from the obstacle [94, 25]:

a(x) = f(x) + u(x), x œ Rn
\ � (4.84)

where f is the incident field and u is the scattered field. The incident field f is the solution of the
Helmholtz equation obtained when no obstacles exist in the medium:

≠Ò · (“(x)Òf(x)) = Ê2f(x), x œ Rn.

To derive an equation for the scattered field, we substitute (4.84) into (4.83) to obtain:

≠Ò · (“(x)Òu(x)) ≠ Ê2u(x) = 0, x œ Rn
\ �

In the numerical setting, it is necessary to approximate the free space using a bounded computational
domain. To this end, we consider a rectangular domain D µ R3 that contains the obstacle � µ D. This
type of approximation requires us to ensure that the scattered wave is outgoing via the Sommerfeld
radiation condition:

lim
ræŒ

r

3
ˆu(x)

ˆr
≠ iÊu(x)

4
= 0, (4.85)

where r = ÎxÎ. By introducing an artificial boundary �E around the obstacle �, one can derive
approximations for (4.85) using asymptotic expansions of the solution at large distances from the origin.
The accuracy of these approximations improves as the distance between the artificial boundary � and the
obstacle � increases. Therefore, achieving higher accuracy requires enlarging the computational domain,
which results in increased computational cost. In our case, we utilize a first order approximation as
presented in [295]:

“
ˆu

ˆn�E

≠

3
iÊ ≠

1
R

4
u = 0 on �E , (4.86)

where n�E denotes the normal vector to �, and R is the distance between �E and ˆD. In our work, we
consider that the boundary of the obstacle ˆ� is decomposed into ˆ� = �R fi �, such that:

• The region � consists of sound-hard material, supporting an inhomogeneous Neumann condition:

“
ˆu

ˆnˆ�
= ≠“

ˆf

ˆnˆ�
, x œ �,

which means that the incident wave is entirely reflected on this region.

• The region �R consists of the sound-soft material which supports a Robin boundary condition:

“
ˆu

ˆnˆ�
+ iÊ

z
u = ≠“

ˆf

ˆnˆ�
≠

iÊ

z
f, x œ �R,

which means that the wave is partially absorbed on this region, according to the acoustic impedance
z > 0.
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Collecting all these conditions, we can characterize the scattered field as the unique, complex valued,
solution u�R œ H1(D \ �; C) to the boundary value problem:

Y
_________]

_________[

≠Ò · (“Òu�R) ≠ Ê2u�R = 0 in D \ �

“
ˆu�R

ˆnˆ�
= ≠“

ˆf

ˆnˆ�
on �,

“
ˆu�R

ˆnˆ�
+ iÊ

z
u�R = ≠“

ˆf

ˆnˆ�
≠

iÊ

z
f on �R,

“
ˆu�R

ˆn�
≠

3
iÊ ≠

1
R

4
u�R = 0 on �E ,

(4.87)

where we have employed the subscript �R to indicated the dependence on the sound-soft boundary.
See Fig. 4.18 for an illustration of the setup. Finally, let us remark that the incident field f and the
acoustic impedance z are given as the data of the problem. The weak formulation for the solution
u�R œ H1(D \ �; C) to (4.87) is:

’v œ H1(D \ �; C),
⁄

D\�
“Òu�R · Òv dx ≠ Ê2

⁄

D\�
u�Rv dx ≠

3
iÊ ≠

1
R

4 ⁄

�E

u�Rv ds ≠
iÊ

z

⁄

�R

u�Rv ds =

iÊ

z

⁄

�R

fv ds +
⁄

ˆ�
“

ˆf

ˆnˆ�
v ds,

(4.88)

where v is the conjugate of v, and Òv is the conjugate of its gradient. Note that in this case, the normal
vector to the boundary of � is the negative of the normal to the boundary of D \ �, i.e.:

nˆ�(x) = ≠n
ˆ(D\�)(x), x œ ˆ�.

See Fig. 4.19 for an illustration.

Figure 4.19: Illustration of the boundary normal setup for the scattering problem.
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Remark 4.19. One particular fact about (4.88), is that despite its ellipticity, the Lax-Milgram lemma
cannot be used to establish well-posedness since the sesquilinear form is not coercive. The appropriate
approach to address the Helmholtz problem is to apply the so-called Banach–Nešcas–Babuška theorem
(see Chapters 25 and 35 in [137]). In this case the imposition of the Robin boundary conditions
in (4.87) yields the well-posedness which is essentially due to the non zero imaginary part in the
condition.

4.12.2 The optimization problem

We aim to tailor the optimization problem presented in [94] to suit our specific context. As discussed
in that study, and illustrated by the decomposition in (4.84), the obstacle can be e�ectively cloaked by
minimizing the squared amplitude of the scattered field. For a given obstacle �, we would like to replace
the sound-hard material with the sound-soft material on the surface ˆ�. Hence, the optimization problem
is:

min
�Rµˆ�

J(�R), (4.89)

where

J(�R) = 1
2Vol(�)

⁄

D\�
|u�R |

2 dx (4.90)

u�R is the scattered pressure field solution to (4.87) and |u|
2 := uu, u œ C.

4.12.3 The shape derivative

In this section, we state the shape derivative of (4.89). The proof can be found in Appendix A.2.2.

Proposition 4.6. The criterion J(�R) is shape di�erentiable at ◊ = 0 (with ◊ · nˆ� = 0), and its
shape derivative reads:

J Õ(�R)(◊) = ≠Im
3⁄

ˆ�R

Ê

z
(u�R + f)p�R ◊ · nˆ�R d‡

4
,

where the adjoint state p�R œ H1(�; C) is the unique solution to the following boundary value problem:
Y
__________]

__________[

≠Ò · (“Òp�R) ≠ Ê2p�R = ≠
u�R

Vol(�) in D \ �

“
ˆp�R

ˆnˆ�
= 0 on �,

“
ˆp�R

ˆnˆ�
≠

iÊ

z
p�R = 0 on �R,

“
ˆp�R

ˆn�
≠

3
≠iÊ ≠

1
R

4
p�R = 0 on �E ,

4.12.4 The topological derivative

It is important to note that our setting di�ers slightly from that of Section 4.7, with the key di�erence
being the absence of a homogeneous Dirichlet region and the Robin boundary conditions. However,
this variation does not pose a problem, as the proof is analogous. Consequently, we can still derive an
expression for the topological sensitivity when introducing a sound-soft region into a sound-hard region.
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Proposition 4.7. The perturbed criterion J(Gx0,Á) has the following asymptotic expansion in terms
of Á:

J(Gx0,Á) = J(G) + fiÁ2k Im
1

u0(x0) + f(x0)p0(x0)
2

+ o(Á2) if d = 3,

where the adjoint state p�R œ H1(�; C) is the unique solution to the following boundary value problem:
Y
__________]

__________[

≠Ò · (“Òp�R) ≠ Ê2p�R = ≠
u�R

Vol(�) in D \ �

“
ˆp�R

ˆnˆ�
= 0 on �,

“
ˆp�R

ˆnˆ�
≠

iÊ

z
p�R = 0 on �R,

“
ˆp�R

ˆn�
≠

3
≠iÊ ≠

1
R

4
p�R = 0 on �E ,

4.12.5 Experiment setup
We consider the minimization of the norm of pressure field while also minimizing occupied surface area:

min
�Rµˆ�

1
2Vol(�)

⁄

D\�
|u�R |

2 dx + ¸ Area(�R), (4.91)

where ¸ > 0 is a penalization parameter. We assume that the computational domain D has an associated
tetrahedral mesh T of the computational domain D, such that it contains a submesh K representing
the obstacle �. For our examples, we have settled on the model of an aircraft, depicted in Fig. 4.21. In
our experiments, the computational domain, is a box containing an inner box, which itself contains the
aircraft. This is depicted in Fig. 4.22. For simplicity, we have assumed that “ = 1, everywhere, so that
the incident wave is given by the plane wave function:

’x œ Rd, f(x) = eiÊ›·x

travelling vertically in the direction › = (0, 0, 1) œ Rn. The computational mesh consists of 334k vertices,
with 1.97m tetrahedra. The aircraft itself consists of 464k tetrahedra and 93k vertices. To solve the
problem, we construct a finite element space on the mesh T \ K. The optimization process starts with 6
iterations of topological changes. After the 10th iteration, we continue applying topological updates every
10 iterations, up to iteration 100. Between the topological iterations, we perform geometric optimization,
and let the algorithm run for 142 iterations. The parameters chosen are detailed in Section 4.12.5.

Parameter Value
¸ 1e ≠ 7
– 4
Ê 20

hmax Ê/3
hmin Ê/32

Table 4.2: Values of the parameters used in the optimization process.

4.12.6 Analysis of results
The snapshots of the evolution process are shown in Fig. 4.23, and the convergence history is depicted in
Fig. 4.20. The final design is illustrated in Figs. 4.24 to 4.26. The whole iterative process took a total of
approximately 12.5h for 142 iterations. The first snapshot (i = 6) displays the design after introducing 6
sound-soft zones. The topological derivative seems to prioritize the wings and the center of the aircraft.
By iteration 10, the two central holes have vanished, and the holes near the wings are modified through
geometrical optimization. This process continues, with no new areas forming, as geometrical optimization
appears to suppress the nucleation of new zones. The design gradually becomes homogenized, similar to
the outcome in Section 4.11, where new regions are formed by the geometrical optimization “cutting o�
regions” rather than inserting new ones via the topological step.
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Figure 4.20: Convergence history of the criterion.

The primary focus of the final design is clear: the wings are the areas that require prioritization to
e�ectively conceal the aircraft. While this may not be immediately apparent, a closer analysis shows
that the wings are positioned perpendicular to the direction › = (0, 0, 1), which causes them to reflect
the wave more strongly and generate the highest pressure zones. This is evidenced by examining the
magnitude of the scattered pressure field around these regions, as shown in Fig. 4.26. From these figures,
it becomes evident that the wings, along with the tail, should be the primary focus. In the final design, the
pressure field around the wings has been di�used through the application of a Robin boundary, making
the wings appear ”less visible.” Additionally, the plots suggest that the tail should be the next priority for
optimization. However, we believe that no material was added to the tail due to area penalization, which
placed greater emphasis on the wings.
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Figure 4.21: Di�erent view angles of the tetrahedral mesh T which serves as the obstacle in the medium
D. The wingspan of the aircraft is 100 units wide, the rear wing is 21 units high, the cockpit is 8 units
high and the aircraft itself is 110 units long. The boundary of the obstacle consists of only sound-hard
material.
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Figure 4.22: Di�erent view angles of the tetrahedral mesh T which serves as the computational domain D.
The outermost layer ˆD, is the boundary of the domain. The middle layer acts as the artificial boundary
�E , where the Sommerfield radiation condition is imposed. The innermost layer is just the boundary
ˆ� = � fi �R of the obstacle �. The outer box is 200 units high, 300 wide, and 500 units long. The inner
box is 100 units high, 150 units wide, and 250 units long.
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(a) i = 6

(b) i = 10

Figure 4.23: Snapshots of the optimization process of the sound-soft optimization process. Here i indicates
the number of iterations that have passed. The pink color corresponds to the sound-soft boundary, while
the rest corresponds to the sound-hard boundary.
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(c) i = 20

(d) i = 40

Figure 4.23: Snapshots of the optimization process of the sound-soft optimization process. Here i indicates
the number of iterations that have passed. The pink color corresponds to the sound-soft boundary, while
the rest corresponds to the sound-hard boundary.
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(e) i = 80

(f) i = 120

Figure 4.23: Snapshots of the optimization process of the sound-soft optimization process. Here i indicates
the number of iterations that have passed. The pink color corresponds to the sound-soft boundary, while
the rest corresponds to the sound-hard boundary.
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Figure 4.24: Top and bottom views of the final result (i = 142) of the experiment in Section 4.12.
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Figure 4.25: Side views of the final result (i = 142) of the experiment in Section 4.12.
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Figure 4.26: Perspective views of the final result (i = 142) of the experiment in Section 4.12.
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(a) Magnitude of the scattered pressure field, with only a sound-hard boundary.

(b) i = 120

Figure 4.26: Magnitude of the scattered pressure field, with the repartition of sound-soft boundary found
by the algorithm.
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(c) Magnitude of the scattered pressure field, with only a sound-hard boundary.

(d) Magnitude of the scattered pressure field, with the repartition of sound-soft boundary found by the
algorithm.

Figure 4.26: Bottom cross-section view of the magnitude of the scattered pressure field u�R .
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4.13 Optimization of the repartition of structural supports for
a water tank

Structural optimization involves a suite of computational techniques designed to enhance the performance,
e�ciency, and cost-e�ectiveness of structures by systematically modifying their geometry, material
properties, or layout. This optimization can be achieved through various methods, including structural
and sensitivity analyses, computer-aided geometric design, mathematical optimization, and interactive
graphics.

Shape optimization, a key aspect of structural optimization, refines the geometry of structures to
improve load distribution, reduce stress concentrations, and enhance overall durability. This approach
also boosts aerodynamic or hydrodynamic performance, making it essential for applications in aerospace
[353, 215], automotive [286, 336], and marine industries [342]. Additionally, shape optimization leads
to significant weight reduction by eliminating unnecessary material, thus saving costs and increasing
e�ciency. This lightweight design is particularly advantageous in industries where fuel savings and
increased payload capacity are crucial. Furthermore, it fosters innovation and sustainability by enabling
creative, resource-e�cient designs that reduce environmental impact [34]. For a technical overview of
shape and topology optimization techniques applied to structural optimization, we refer the reader to
[15], and to [274] for a qualitative comparison of various methods applied to structural optimization.

In this section, we analyze the case of optimizing the supporting regions of a water tank structure,
as illustrated in Fig. 4.27. Our goal is to minimize the total displacement of the water tank, thereby
enhancing its ability to handle forces and reducing the risk of structural failure. We consider that certain
regions of the tank’s boundary can be fixed, experiencing no displacement, and our aim is to optimize the
placement of these fixed regions. In practice, these fixed regions correspond to where the tank is riveted
or attached to a concrete structure.

(a) Schematic diagram of a water tank. (b) Artistic rendition of a water tank.

Figure 4.27: A supported water tank typically features a cylindrical body made of materials like steel,
concrete, or polyethylene, with a flat or slightly curved bottom, and a domed or flat top equipped with an
access hatch or manway. The tank is elevated on legs made of, typically made steel or reinforced concrete,
whose number and thickness depend on the tank’s size and load requirements. To enhance stability, cross
braces may connect the legs, forming a lattice structure, and the legs are anchored to a solid base plate
or foundation to distribute the load evenly and prevent sinking or tilting.
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4.13.1 The optimization problem
We consider that the water tank is represented by a bounded Lipschitz domain � µ R3. The boundary
ˆ� is decomposed into the following parts:

• The region �D is that where the water tank is fixed;

• The region �F it the upper part of the tank; this traction-free region is non optimizable, as it cannot
be riveted because it usually serves as the lid of the tank;

• The remaining region � is traction-free.

The water tank � is subject to body forces such as gravity f œ L2(�)d. In this situation, the
displacement is modeled as the unique solution u œ H1(�)d to the linearized elasticity system:

Y
_]

_[

≠Ò · (Ae(u�D )) = f in �,

Ae(u�D )nˆ� = 0 on �F fi �,

u�D = 0 on �D.

(4.92)

We aim to minimize the mean displacement using the least amount of material while also penalizing
the boundary of the region �D. This objective is formulated as follows:

min
�Dµˆ�

J(G) = 1
2Vol(�)

⁄

�
|u�D |

2 dx. (4.93)

In the following sections, we will present both the topological and shape derivatives.

4.13.2 The shape derivative
Similarly to Section 4.2.4, we trade the exact problem for the approximated problem:

min
�Dµˆ�

JÁ(�D) = 1
2Vol(�)

⁄

�
|u�D,Á|

2 dx + ¸1

⁄

�D

dx + ¸2

⁄

ˆ�D

d‡(x),

where u�D,Á œ H1(�) is the unique solution to the following boundary value problem:
I

≠Ò · (Ae(u�D,Á)) = f in �,

Ae(u�D,Á)nˆ� + h�D,Áu�D,Á = 0 on ˆ�.

where the function h�D,Á : ˆ� æ R is defined by:

’x œ ˆ�, h�D,Á(x) = h

A
dˆ�

�D
(x)

Á

B

where dˆ�
�D

is the signed distance function to �D on ˆ� and h œ CŒ(R) satisfies (4.8). We then calculate
the shape derivative of the approximated shape functional. We omit the proof since it is very similar to
the proof of Proposition 4.4.

Proposition 4.8. The criterion JÁ(�D) is shape di�erentiable at ◊ = 0 (with ◊ · nˆ� = 0), and its
shape derivative reads:

J Õ

Á
(�D)(◊) = ≠

1
Á2

⁄

ˆ�
hÕ

A
dˆ�

�D

Á

B
◊(fi�D ) · n�D (fi�D ) u�D,Á · p�D,Á ds,

where p�D,Á œ H1(�) is the weak solution to the following equation:
Y
]

[
≠Ò · (Ae(p�D,Á)) = ≠

u�D,Á

Vol(�) in �,

Ae(p�D,Á)nˆ� + h�D,Áp�D,Á = 0 on ˆ�.

169



CHAPTER 4. SHAPE AND TOPOLOGY OPTIMIZATION OF THE REGIONS SUPPORTING
BOUNDARY CONDITIONS

4.13.3 The topological derivative
The setting presented in this section is exactly that from Section 4.8, save from the region �F . Thus, we
can directly apply Theorem 4.7 to give the expression for the topological expansion.

Proposition 4.9. The perturbed criterion J((�)x0,Á), accounting for the replacement of Êx0,Á µ �
by �D, has the following asymptotic expansion:

J(Gx0,Á) = J(G) + Á Mu�D (x0) · p�D (x0) + o(Á).

Here, the polarization tensor M is defined by (4.67) and the adjoint state p�D is the unique solution
H1(�)d to the boundary value problem:

Y
__]

__[

≠Ò · Ae(p�D ) = ≠
u�D

2Vol(�) in �,

p�D = 0 on �D,

Ae(p�D )nˆ� = 0 on �F fi �N fi �.

4.13.4 Experiment setup
We consider the minimization of J(�N , �D) while also minimizing occupied surface area and contour
length:

min
�Dµˆ�

J(G) = 1
2Vol(�)

⁄

�
|u�D |

2 dx + ¸1 Area(�D) + ¸2 Cont(�D), (4.94)

where ¸1, ¸2 > 0 are penalization parameters. The domain � is represented by a tetrahedral mesh T ,
consisting of 17k vertices and 81k tetrahedrons, as shown in Fig. 4.28.

On the top of the water tank, we have designated a fixed region, where no supports are permitted,
meaning that it is not subject to optimization. The mesh is initialized with a circular region of with unit
radius, located on the bottom of the water tank. The maximal edge length hmax is fixed to 0.5 and the
minimal edge length is fixed to hmin.

We have conducted two experiments, with the primary di�erence being the contour penalization
parameter ¸2. In the first experiment, we set ¸2 = 0, meaning no contour penalization was applied, while
in the second experiment, we set ¸2 > 0. The parameters for both experiments are detailed in Table 4.3.

Parameter Value
Á 0.000001
¸1 0.00001
¸2 0
⁄ 0.5769
µ 0.3846
– 4
f (0, 0, ≠0.01)

hmax 0.5
hmin 0.05

(a) Experiment 1.

Parameter Value
Á 0.000001
¸1 0.00001
¸2 0.00001
⁄ 0.5769
µ 0.3846
– 4
f (0, 0, ≠0.01)

hmax 0.5
hmin 0.05

(b) Experiment 2.

Table 4.3: Values of the parameters used in the optimization process.

Our findings indicate that the iterative process produces reproducible results when we start with 5
iterations of topological optimization (focused solely on nucleating new small regions), followed by 45
iterations of geometrical optimization. Afterward, we perform a topological optimization step every 10
iterations until reaching 100 iterations, at which point only geometrical optimization is applied.

4.13.5 Analysis of results
The results of both experiments are illustrated in Fig. 4.29 and Fig. 4.31. In the first experiment, the
algorithm clearly prioritizes the areas around the flat indentations, commonly referred to as “corrugations”
or “ribs”, on the water tank. The initial topological steps strategically position the supports near these
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Figure 4.28: Di�erent view angles of the tetrahedral mesh T employed in the simulations. The major
radius and height of the water tank are both 15 units in length, while the minor radius is 11 units wide.
The blue region in the picture corresponds to �F which is the region that will not be optimized and
remains traction free. The small pink region on the bottom of the tank corresponds to the initial support
region.

ribs, while the subsequent geometrical steps focus on covering most of these areas. The bottom region
remains largely unchanged, highlighting its essential role in minimizing the displacement of the water
tank. The final design, particularly when viewed from the bottom, underscores the importance of placing
supports on the flat regions of the ribs, as the algorithm consistently targets these areas while minimizing
material usage elsewhere on the mesh.

The second experiment, which incorporates contour penalization, further validates this observation.
With the contour penalized, the surface shapes become more regular, evidenced by the supporting region
on the bottom maintaining a more circular shape. In this final design, all supporting areas are confined to
the ribs of the water tank or its bottom, with no supports extending beyond these critical regions. This
behavior aligns with previous findings in the literature [113, 339], which demonstrate that corrugated
structures exhibit high sti�ness when forces are applied perpendicular (transverse) to the direction of the
ribs, making them resistant to loads in this direction. Additionally, these structures are more flexible or
compliant when forces are applied along the direction of the ribs, a property that can be advantageous in
applications where movement is needed in one direction but not others. The smooth minimization of the
objective by the algorithm further reinforces the validity of our results, confirming the e�ectiveness and
reliability of the approach.
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(a) i = 5

(b) i = 20

(c) i = 40

Figure 4.29: Snapshots of the optimization process of the boundary repartition for the first experiment.
Here i indicates the number of iterations that have passed. The blue color corresponds to the region not
being optimized, the pink region to the colour of the support region on the tank.
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(d) i = 80

(e) i = 120

(f) i = 165

Figure 4.29: (cont.) Snapshots of the optimization process of the boundary repartition for the first
experiment. Here i indicates the number of iterations that have passed. The blue color corresponds to
the region not being optimized, the pink region to the colour of the support region on the tank.
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(a) i = 245 (no mesh lines)

(b) Evolution of the objective criterion JÁ(�D)

Figure 4.30: Final design of the supported region along with convergence history, for the first experiment.
The bottom view of the tank is displayed to better illustrate the distribution of the supporting material
in the areas prioritized by the algorithm.
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(a) i = 20

(b) i = 40

(c) i = 80

Figure 4.31: Snapshots of the optimization process of the boundary repartition for the second experiment.
Here i indicates the number of iterations that have passed. The blue color corresponds to the cathode
region and the orange color the anode region.
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(d) i = 120

(e) i = 160

(f) i = 200

Figure 4.31: Snapshots of the optimization process of the boundary repartition for the second experiment.
Here i indicates the number of iterations that have passed. The blue color corresponds to the region not
being optimized, the pink region to the colour of the support region on the tank.
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(g) i = 265

(h) i = 265 (no mesh lines)

(i) Evolution of the objective criterion JÁ(�D)

Figure 4.31: Final design of the supported region along with convergence history, for the second experiment
(with contour penalization). The bottom view of the tank is displayed to better illustrate the distribution
of the supporting material in the areas prioritized by the algorithm.
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4.14 Optimization of a clamp-locator system
The “clamp-locator” system is crucial in various scientific and engineering applications for precisely
positioning and holding objects or components during operations or processes. This system’s primary
function is to ensure accuracy, stability, and repeatability, which are essential for achieving reliable results
in experiments, manufacturing, and other technical procedures. A well-designed clamp-locator system
must provide precise positioning to ensure that objects are accurately aligned according to required
specifications. Any deviation from this precision can lead to errors in the results or final product,
highlighting the importance of this system in maintaining accuracy.

Di�erent fields present unique challenges for the clamp-locator system. For instance, in biological
contexts, the system may need to handle delicate samples without causing damage [314], while industrial
settings might require managing heavy or large components [222]. Example applications of clamp-locator
systems include CNC machines [321], where they ensure parts are held in precise positions for machining,
welding, or assembly; scientific research, where they position samples accurately in microscopes or other
analytical instruments; medical procedures, where they hold surgical tools or components in place during
operations; and robotics, where they ensure components are correctly aligned for robotic assembly or
manipulation tasks.

While clamp-locator systems provide numerous advantages in manufacturing and machining operations,
excessive clamping force can deform delicate workpieces, leading to higher scrap rates and material costs.
Therefore, it is essential to minimize this deformation by optimizing the geometry and placement of
the clamping regions. In this section, our goal is to address this issue using our boundary optimization
technology by attempting to minimize the mean displacement of the piece.

(a) Schematic diagram of a clamp-locator system. (b) Artistic depiction of a clamp-locator sys-
tem in action on a CNC machine, manufac-
turing a component.

Figure 4.32: A clamp-locator system is essential in manufacturing and machining operations, particularly
in CNC machining, to hold and position workpieces accurately and securely. It comprises clamps to apply
pressure and locators to ensure precise positioning, enhancing accuracy, repeatability, and safety. This
system is vital for operations requiring high precision, such as drilling, milling, assembly, and inspection,
ensuring uniformity and e�ciency in mass production by reducing setup time and maintaining consistent
positioning.

4.14.1 The optimization problem
We consider that the mechanical piece is represented by a bounded Lipschitz domain � µ R3. The
boundary ˆ� is decomposed into the following parts:

• The region �D is that where locators are operating, i.e. the displacement of the piece is prevented.

• A strong force f : �N æ Rd is applied on the clamping region �N .
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• The tool applies a force g : �T æ Rd on the region �T , which is fixed and not subject to optimization.

• No e�orts are applied on the region �F , which is not subject to optimization.

• The remaining region � is also traction-free, but it is subject to optimization.

Furthermore, we assume that the body forces experienced by the piece are not significant enough to
be taken into account. In this situation, we model the displacement as the unique solution u œ H1(�)d to
the linearized elasticity system:

Y
______]

______[

≠Ò · (Ae(uN,D)) = 0 in �,

Ae(uN,D)nˆ� = f on �N ,

Ae(uN,D)nˆ� = g on �T ,

Ae(uN,D)nˆ� = 0 on �F fi �,

uN,D = 0 on �D

(4.95)

for f, g œ CŒ(Rn). We seek to minimize the total displacement of the mechanical piece by finding a
configuration of �N and �D. This problem is formulated as:

min
�N ,�Dµˆ�

1
2Vol(�)

⁄

�
|uN,D|

2 dx (4.96)

where uN,D is the solution to (4.95).

4.14.2 The shape derivative
We trade the exact problem for the approximated problem:

min
�N ,�Dµˆ�

JÁ(�N , �D) = 1
2Vol(�)

⁄

�
|uN,D,Á|

2 dx,

where uN,D,Á œ H1(�) is the unique solution to the following boundary value problem:
Y
______]

______[

≠Ò · (Ae(uN,D,Á)) = 0 in �,

Ae(uN,D,Á)nˆ� = f on �N ,

Ae(uN,D,Á)nˆ� = g on �T ,

Ae(uN,D,Á)nˆ� = 0 on �F ,

Ae(uN,D,Á)nˆ� + h�D uN,D,Á = 0 on �D fi �

where the function hN,Á : ˆ� æ R (resp. hD,Á) is defined by:

’x œ ˆ�, hN,Á(x) = h

A
dˆ�

�N
(x)

Á

B

where dˆ�
�N

is the signed distance function to �N on ˆ� and h œ CŒ(R) satisfies (4.8). We then calculate
the shape derivative of the approximated shape functional. We omit the proof since it is very similar to
the proof of Proposition 4.4.

Proposition 4.10. The criterion JÁ(�D, �T ) is shape di�erentiable at ◊ = 0 (with ◊ · nˆ� = 0), and
its shape derivative reads:

J
Õ
Á(�N , �D)(◊) = ≠ 1

Á2

⁄

ˆ�
h

Õ
3

d
ˆ�
�D

Á

4
◊(fiˆ�D ) · nˆ�D (fi�) uN,D,Á · pN,D,Á ds +

⁄

ˆ�N

g · pN,D,Á ◊ · nˆ�N d‡(x)

where pN,D,Á œ H1(�) is the weak solution to the following equation:
Y
]

[
≠Ò · (Ae(pN,D,Á)) = ≠

uN,D,Á

Vol(�) in �,

Ae(pN,D,Á)nˆ� + hD,ÁpN,D,Á = 0 on ˆ�.
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4.14.3 The topological derivative
The sensitivities of the shape functional J(�D, �N ) with respect to the addition of a small surface disk
Êx0,‘, centered at x0 œ �, are presented in the following result. The expansion of J((�D)x0,Á, �N ) comes
as a direct result of Theorem 4.7 while the proof of the expansion for J(�D, (�N )x0,Á) is analogous to the
results of Section 4.6.2, so it is omitted here for the sake of brevity

Proposition 4.11. Let x0 œ � be given. Then,

(i) The perturbed criterion J((�N )x0,Á, �D), accounting for the addition of Êx0,Á µ � to �N , has
the following asymptotic expansion:

J((�N )x0,Á, �D) =
I

J(�N , �D) ≠ 2Ág(x0) · pN,D(x0) + o(Á) if d = 2,

J(�N , �D) ≠ fiÁ2g(x0) · pN,D(x0) + o(Á2) if d = 3.

(ii) The perturbed criterion J(�N , (�D)x0,Á), accounting for the addition of the Êx,Á µ � to �D, has
the following asymptotic expansion:

J(�N , (�D)x0,Á) =
I

J(�N , �D) + 1
|log Á|

fiµ

1≠‹
u0(x0) · pN,D(x0) + o

1
1

| log Á|

2
if d = 2,

J(�N , �D) + Á Mu0(x0) · pN,D(x0) + o(Á) if d = 3.

In the above, the polarization tensor M is defined by (4.67) and the adjoint state pN,D œ H1(�)d is
characterized by the following boundary value problem:

Y
_]

_[

≠Ò · (Ae(pN,D)) = ≠
uN,D

Vol(�) in �,

Ae(pN,D)nˆ� = 0 on � fi �N fi �T fi �F ,
pN,D = 0 on �D.

4.14.4 Experiment setup
We consider the minimization of J(�N , �D) along with area penalization:

min
�N ,�Dµˆ�

1
2Vol(�)

⁄

�
|u�N ,�D |

2 dx + ¸1 Area(�N ) + ¸2Area(�N ). (4.97)

where ¸2, ¸1 > 0 are weak penalization parameters on the surface area of the locator region and clamp
region, respectively. The domain � is discretized using a tetrahedral mesh T , comprising 28,000 vertices
and 146,000 tetrahedrons, as illustrated in Figs. 4.33 and 4.34. The top and bottom regions (highlighted
in pink) are excluded from the optimization process. The pink region represents �F , while the orange
region designates �T , where the tool applies force. The parameters used in our experiments are outlined
in Table 4.4. To ensure the reproducibility of the optimization process, we found that performing a
topological step every 10 iterations—including the first two iterations—was most e�ective for both the
locator and clamp regions. This process continues until 100 iterations are completed, after which only
geometrical optimization is carried out. The evolution scheme follows a strategy similar to that described
in Section 4.11, alternating between the optimization of the locator and clamp regions, one at a time.

Parameter Value
Á 0.00001
¸1 0.0001
¸2 0.0001
– 4
f ≠nˆ�/10
g (1, 0, 0)

hmax 0.2
hmin 0.02

Table 4.4: Values of the parameters used in the optimization process.
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4.14.5 Analysis of results
The snapshots of the experiment are shown in Fig. 4.35, with the final design and objective history
illustrated in Fig. 4.36. The application of our method to the clamp-locator system is particularly significant
for validating our approach, as it involves optimizing two distinct zones that impose di�erent boundary
conditions on a complex, curved geometry. This problem is challenging because many configurations could
potentially stabilize the system and minimize displacement, making it di�cult to identify an optimal
configuration. Further complicating the issue, our experiments revealed that adding a new clamp region
could destabilize the system, leading to an increase in the objective functional, as the new clamp might
push the piece in a direction that isn’t adequately located. Despite these challenges, the algorithm
successfully minimizes the mean displacement, reducing the objective from 46.1951 to approximately
0.08, a 577-fold decrease. Notably, the final design in Fig. 4.36 predominantly relies on clamp regions
to achieve this minimization. The optimal design features small locating regions at the front and back,
with elliptical regions positioned opposite the direction of the load applied by the tool. This outcome is
unexpected, as one might initially assume that the method would favor adding locator regions extensively
and removing clamp regions, resulting in a trivial solution. However, the algorithm identifies a non-trivial
local minimum, demonstrating its e�ectiveness and revealing various possible configurations.
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Figure 4.33: Di�erent view angles of the tetrahedral mesh T employed in the clamp-locator simulations.
The pink region on the bottom and top of the mechanical piece represens the region �F , which is traction
free and not subject to optimization. The blue region corresponds to the initial locator region �D. The
rest is the traction free boundary �.
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Figure 4.34: Angles of the front and back of the mechanical piece. The blue region corresponds to the
initial guess of the locator region �D. It is 2 units wide in diameter. The orange circle contained withing
the pink region �F represents the region �T where the tools is applying the force.
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(a) i = 20

(b) i = 40

Figure 4.35: Snapshots of the optimization process of the boundary repartition. Here i indicates the
number of iterations that have passed. The blue color corresponds to the locator region �D and the green
color represents the clamp region �N .
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(c) i = 80

(d) i = 120

Figure 4.35: (cont.) Snapshots of the optimization process of the boundary repartition. Here i indicates
the number of iterations that have passed. The blue color corresponds to the locator region �D and the
green color represents the clamp region �N .
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(e) i = 160

(f) i = 200

Figure 4.35: (cont.) Snapshots of the optimization process of the boundary repartition. Here i indicates
the number of iterations that have passed. The blue color corresponds to the locator region �D and the
green color represents the clamp region �N .
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(a) i = 245

(b) Evolution of the objective criterion JÁ(�D)

Figure 4.36: Final design of the clamp-locator design for the mechanical piece along with the objective
convergence history.
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Chapter 5

Rodin: A numerical C++20 library for
shape and topology optimization

Rodin is a lightweight and modular finite element framework designed to support the implementation of
shape and topology optimization algorithms. It o�ers a comprehensive suite of functionalities essential for
these tasks, including tools for refining and remeshing the underlying shape and elegant mechanisms for
specifying and solving variational problems. This chapter will explore the design principles, key features,
and practical applications of Rodin, demonstrating how it facilitates e�cient and flexible optimization
workflows in numerical simulations. At the time of writing, the library is available at:

https://github.com/cbritopacheco/rodin,

under the Boost Software License 1.0. Furthermore, the latest documentation can be found at:

https://cbritopacheco.github.io/rodin .

All the numerical examples generated in this thesis are a product of Rodin.

5.1 Introduction
In the realm of computational science and engineering, the finite element method [136, 190, 92] is a
powerful numerical technique used to solve complex partial di�erential equations that describe a wide
range of physical phenomena, from fluid dynamics to structural mechanics and electromagnetics. These
equations are fundamental in modeling the behavior of systems under various conditions, allowing scientists
and engineers to predict outcomes, optimize designs, and solve real-world problems.

However, translating the mathematical formulations of these PDEs into computational code can be
challenging. The process often involves reformulating the equations in ways that are not immediately
intuitive, which can lead to errors, ine�ciencies, and a steep learning curve for those new to the field.

5.1.1 Philosophy
To address these challenges, there is a growing interest in finite element libraries that closely resemble
the mathematical notation used in the original PDE formulations [24]. Such libraries aim to bridge the
gap between theoretical models and their computational implementation, providing tools that not only
perform the necessary numerical computations but do so in a way that remains faithful to the original
mathematical expressions. This approach o�ers numerous advantages, such as:

1. Intuitive understanding and ease of use. When a finite element library mirrors the mathematical
notation of PDEs, it aligns more naturally with the thought process of scientists, engineers, and
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mathematicians. This close resemblance helps users to more easily translate their theoretical models
into computational code, reducing the cognitive load associated with interpreting or reformatting
the problem into a less familiar or more abstract code structure.

2. Reduced error rate. The more closely a computational implementation matches the original
mathematical formulation, the less room there is for errors during transcription from theory to code
[207]. When the code closely reflects the mathematical equations, it becomes easier to verify and
validate the correctness of the implementation, leading to more reliable and accurate simulations.

3. Improved collaboration. Many projects in computational science and engineering are collabora-
tive, often involving individuals with di�erent expertise (e.g., mathematicians, engineers, computer
scientists). A library that uses familiar mathematical notation allows di�erent experts to understand,
review, and contribute to the code without needing extensive knowledge of the programming details,
fostering interdisciplinary collaboration.

4. Educational value. For students and those new to the field, a finite element library that uses
familiar mathematical notation can serve as an educational tool. It helps them bridge the gap
between learning the theory behind PDEs and applying it computationally, thereby enhancing their
understanding of both the mathematical concepts and the numerical methods used to solve them.

5. Direct mapping from theory to implementation. A library that closely follows the mathemat-
ical notation allows for a direct mapping from theoretical models to computational implementation.
This is particularly important in fields where complex PDEs govern physical phenomena, such as
fluid dynamics, electromagnetics, or structural analysis. The ability to directly implement these
models without needing to significantly alter their form increases the e�ciency of model development
and testing.

6. Enhanced flexibility for complex models. When dealing with complex or non-standard PDEs,
a library that uses a notation similar to mathematical formulations allows researchers to more easily
modify or extend existing models. The mathematical resemblance makes it easier to experiment with
di�erent formulations, boundary conditions, and material properties, providing greater flexibility in
exploring new ideas or refining existing models.

7. Alignment with theoretical developments. Theoretical advancements in numerical methods
and PDE analysis often introduce new techniques and formulations. A finite element library that
aligns with mathematical notation is better positioned to integrate these developments quickly.
This close alignment allows users to stay up-to-date with the latest methodologies, ensuring that
their computational tools remain relevant and e�ective.

5.1.2 Similar libraries to Rodin
Several finite element libraries have been developed with the goal of closely resembling the mathematical
notation used in the modeling of partial di�erential equations and physical phenomena. These libraries
strive to maintain a high level of abstraction, making it easier for users to translate mathematical
formulations directly into code. Some of the notable libraries that follow this trend include:

• FEniCS [23] is one of the most prominent examples of a finite element library that emphasizes a
mathematical approach to problem formulation. It allows users to define PDEs using variational
forms that closely resemble their mathematical expressions. The library provides tools for automatic
di�erentiation, mesh generation, and solving a wide range of PDEs, making it a popular choice for
researchers and educators.

• FiPy [173] is a Python-based finite volume library for solving PDEs, particularly those involving
di�usion, convection, and reaction. While it is not a finite element library in the strictest sense,
FiPy’s design philosophy aligns with the trend of resembling mathematical notation. It allows users
to define PDEs and boundary conditions in a way that mirrors their mathematical formulation,
making it intuitive and easy to use.

• MFEM [32] is a modular finite element library that supports high-performance computing. It also
o�ers a high-level abstraction that aligns with the mathematical notation used in PDE formulations.
MFEM provides tools for defining variational problems and supports advanced features like adaptive
mesh refinement and high-order elements, while maintaining an intuitive interface for users.
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• FreeFem++ [182] is an open-source, high-level integrated development environment (IDE) for
solving partial di�erential equations using the finite element method. It is widely recognized for
its ease of use and its ability to allow users to write code that is very close to the mathematical
formulation of the problems they are solving. In FreeFem++, the user can define the domain, the
PDE, and the associated boundary conditions using a syntax that closely matches the mathematical
notation. This makes it particularly appealing to researchers and engineers who are already familiar
with the mathematical theory behind PDEs, as it reduces the cognitive gap between theory and
implementation. FreeFem++ supports a wide variety of applications, including fluid dynamics,
elasticity, heat transfer, and more. Its high-level scripting language enables rapid prototyping and
experimentation with di�erent models, while also supporting advanced features like automatic mesh
generation, adaptive mesh refinement, and parallel computing.

These libraries are part of a growing movement in computational science to create tools that not only
solve complex problems but do so in a way that is accessible and closely aligned with the theoretical
formulations. This approach helps to lower the barriers to entry, making advanced computational
techniques more widely usable and understandable across di�erent disciplines.

5.2 Modules
In this section, we provide an overview of the core modules that make up Rodin. Each module is discussed
in detail, outlining its role within the framework and how it interacts with other components. This allows
for a comprehensive understanding of how Rodin operates and how its components can be leveraged for
e�cient and accurate finite element computations.

• Alert. This module manages all the messages, warnings, and exceptions generated by Rodin. It
ensures that users are kept informed about important events, potential issues, and errors during the
execution of their computations.

• Assembly. This module is responsible for converting template expressions into linear algebra
objects, such as matrices and vectors. It essentially ”assembles” the mathematical expressions into
forms that can be processed and solved by numerical methods.

• Context. This module helps manage the computing environment in which Rodin operates. It carries
information about the machine’s architecture, such as whether it’s running on CUDA, OpenMPI,
or a distributed network. Currently, only a Sequential context (single-threaded execution) is
implemented, but this module is designed to be expandable for more complex architectures in the
future.

• FormLanguage. This module supports the creation and manipulation of variational form ex-
pressions. It provides type traits and utility functions that help in defining and working with the
mathematical forms used in finite element methods.

• Variational. This module contains the core classes that make up Rodin’s variational form language.
These classes are used to construct template expressions that closely resemble mathematical notation,
making it easier to model and solve PDEs in a way that aligns with theoretical formulations.

• Geometry. This module manages all the functions and data structures related to geometry,
particularly the mesh on which the PDEs are solved. It handles the representation of geometric
entities and ensures that the mesh is correctly structured for the numerical solution process.

• IO. The IO module handles all input and output operations in Rodin. It allows users to save and
load solutions, meshes, and other data in various formats, ensuring compatibility with di�erent
tools and workflows.

• QF. This module includes all the quadrature formulae supported by Rodin. Quadrature formulas
are essential for numerical integration, which is a key part of the finite element method.

• Solver. The Solver module contains the numerical solvers used to solve the linear systems that
arise from the assembly process. It includes implementations of methods like Conjugate Gradient,
among others, which are essential for solving large, sparse systems e�ciently.
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• Threads. This module o�ers tools for managing multithreading in Rodin. It provides the necessary
support to run computations in parallel, leveraging multi-core processors to speed up the solution
process.

• Utility. The Utility module provides various metaprogramming utilities that are used throughout
Rodin. These utilities help streamline code development and ensure that the framework remains
flexible and e�cient.

5.3 Theoretical basis
This section establishes the theoretical foundation upon which the library is built. It introduces essential
concepts such as polygons, polyhedra, and meshes, which form the geometric and mathematical basis for
the library’s functionality.

5.3.1 A primer on meshes
Meshes are crucial in the finite element method as they discretize a continuous domain into smaller
elements, enabling local approximation of the solution to partial di�erential equations. This discretization
transforms the continuous problem into a system of algebraic equations, allowing FEM to handle complex
geometries and boundary conditions e�ciently. They fundamental building block of a mesh is a polytope.

Definition 5.1. In dimension 2, a polygon is a domain whose boundary is a finite union of
segments. In dimension 3, a polyhedron is a domain whose boundary is a finite union of polygons.
When the distinction is not relevant, the term polytope is employed.

With this definition, we can give the mathematical definition of a mesh.

Definition 5.2. Let � be a domain in Rd. A mesh is defined as a collection of open polytopes,
denoted as T = {·k}k=1,...,N , which collectively cover the domain � such that:

� =
N€

k=1
·k.

This means that the union of the closures of all the polytopes forms the closure of the domain �.
Additionally, the triangulation must satisfy two important conditions:

1. Non-overlapping polytopes. The polytopes ·k must not overlap, i.e., ·k fl ·l = ÿ whenever k ”= l.

2. Conformity of the mesh. The mesh T must be conforming, meaning that for any two polytopes
·k and ·l, their intersection ·k fl ·l is either a shared vertex, a shared edge, or, in the case of
three-dimensional shapes, a shared face of the triangulation T .

The dimension of a mesh D = dim(T ) is defined as the dimension of the highest dimensional polytope.

Remark 5.1 (Cells, faces and vertices). In a mesh, cells are the highest-dimensional elements
(e.g., triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D) that partition the domain for
numerical approximation. The faces are (D-1)-dimensional boundaries between cells (e.g., edges in
2D, or polygonal surfaces in 3D) and may also form part of the domain boundary. The vertices are
0-dimensional points where faces meet, defining the corners of cells. See Table 5.1 and Fig. 5.1.

In practice, a mesh is generated from a reference cell, say ·̂ , and a set of geometric transformations
mapping ·̂ to the physical mesh cells · .

Definition 5.3 (Polytope transformation). Let · œ T . If there exists a C1-di�eomorphism
T· : ·̂ æ · , then we say T· is a polytope transformation from the reference polytope ·̂ to the
physical polytope · . See Fig. 5.2

191



CHAPTER 5. RODIN: A NUMERICAL C++20 LIBRARY FOR SHAPE AND TOPOLOGY
OPTIMIZATION

Figure 5.1: Mesh entities in a mesh of dimension D = 2. The yellow triangle represents the polytope of
highest dimension, the red lines are referred to as the edges (or faces) of the mesh, while the 0 dimensional
points are the vertices.

Figure 5.2: Transformation from a reference element ·̂ to the physical element · .
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Entity Dimension Codimension
Vertex 0 D
Edge 1 D ≠ 1
Face 2 D ≠ 2
Cell D 0

Table 5.1: Named entities of low topological dimension or codimension.

The fact that the mesh is generated from reference elements enables a systematic framework for the
finite element method. By defining each element of the mesh as a transformation of a reference element
(e.g., a standard triangle or tetrahedron), the same set of shape functions and numerical integration
schemes can be used uniformly across the mesh. In the sequel we shall revisit the basic concepts of this.

5.3.2 A primer on finite elements
The finite element method is a numerical approach that solves problems by approximating them within a
finite-dimensional function space. These function spaces are usually constructed using basis functions
that are defined over a reference element. In line with the Ciarlet definition [92], a finite element is
characterized by a triplet {·, P, �}, where · represents the physical element, P denotes the polynomial
space, and � is a collection of functionals.

Definition 5.4 (Finite element). A finite element consists of a triplet {·, P, �} where:

• · is a compact, connected, Lipschitz subset of Rd with non-empty interior.

• P is a vector space of functions p : · æ Rn for some positive integer n (typically n = 1 or
n = d).

• � is a set of k œ N linear forms {‡1, . . . , ‡k} acting on the elements of P , and such that the
linear mapping

P – p ‘æ (‡1(p), . . . , ‡k(p)) œ Rk,

is bijective. The linear forms {‡1, . . . , ‡k} are called the local degrees of freedom.

Proposition 5.1. There exists a basis {Ï1, . . . , Ïk} in P such that

‡i(Ïj) = ”ij , 1 Æ i, j Æ k.

In this case, the functions {Ï1, . . . , Ïk} are called the local shape functions.

The most classical example of a finite element is arguably the Lagrange finite element. These are also
called nodal finite elements, since they’re values are specified on the nodes of the polytope · .

Example 5.1 (Lagrange finite element). Let {·, P, �} be a finite element. If there is a set of
points {a1, . . . , ak} in · such that, for all Ï œ P , ‡i(Ï) = Ï(ai), 1 Æ i Æ k, {·, P, �} is called a
Lagrange finite element. The points {a1, . . . , ak} are called the nodes of the finite element, and
the local shape functions {Ï1, . . . , Ïk} (which are such that Ïi(aj) = ”ij for 1 Æ i, j Æ k) are called
the nodal basis of P .

Finite elements are of interest to us mostly because they allow for the local interpolation of values
within the polytope · . The following definition is of great use when working with the representations of
functions that are defined on some Banach space V (·) of functions defined over the polytope · .

Definition 5.5 (Local interpolation operator). Let {·, P, �} be a fixed finite element. Denote
by {‡1, . . . , ‡k} the local degrees of freedom and {Ï1, . . . , Ïk} the local (Rm-valued) shape functions.
Then we define I· as the local interpolation operator given by:

I· (v) :=
kÿ

i=1
‡i(v)Ïi œ P.
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This previous definition gives a formula for representing any function of V (·) in terms of the local basis
function and the degrees of freedom. For the most part these definitions are local in nature, meaning
that they are all defined within the context of one element. Next, we shall see how they can be used to
generate global spaces over the whole mesh T .

To this end, given a mesh T , for each · œ T , the first step is to define the corresponding Banach
space V (·) of Rn-valued functions, along with a linear bijective mapping

Â· : V (·) ≠æ V (·̂),

where V (·̂) is a Banach space for associated reference elements ·̂ .

Proposition 5.2 (Finite element generation). For every · œ T , assume that it is equipped with
a polytope transformation T· . Let {·̂, P̂, �̂} be a finite element. Then, the triplet {·, P· , �· } defined
by: Y

_]

_[

· = T· (·̂),
P· = {Â≠1

·
(p̂); p̂ œ P̂},

�· = {{‡·,i}1ÆiÆk; ‡·,i(p) = ‡̂i(Â· (p)), ’p œ P· } ,

is also a finite element. The local shape functions are Ï·,i = Â≠1
·

(Ï̂i), 1 Æ i Æ k, and the associated
local interpolation operator is

I· : V (·) – v ‘≠æ I· v =
kÿ

i=1
‡·,i(v)Ï·,i œ P· .

We refer to ·̂ as the reference finite element and · as the physical finite element.

A particular case is the Lagrange finite element generated by the pullback of the transformation T· .

Example 5.2. Let {·̂, P̂, �̂} be a Lagrange finite element. One can define V (·̂) = C0(·̂ ; Rn), and
similarly for V (·). By introducing the mapping

Â· : V (·) – v ‘≠æ Â· (v) = v ¶ T· œ V (·̂),

a linear bijection is obtained. Consequently, for all · œ T , the finite element {·, P· , �· } is a Lagrange
finite element. Specifically, we have:

‡i(v) = ‡̂i(Â· (v)) = Â· (v)(âi) = v ¶ T· (âi),

and by defining a·,i = T· (âi) for 1 Æ i Æ k, we identify {a·,i}1ÆiÆk as the nodes of {·, P· , �· }.

Furthermore, one can define a global interpolation operator to be able top represent functions on the
whole mesh T .

Definition 5.6 (Global interpolation operator). Let {·, P· , �· }·œT be a T -based family of fi-
nite elements. The global interpolation operator Ih is defined by:

Ih : Dom(Ih) – v ‘≠æ

ÿ

·œTh

kÿ

i=1
‡·,i(v|· )Ï·,i œ Wh, ,

where its domain Dom(Ih) is given by:

Dom(Ih) = {v œ [L1(�; Rn), ’· œ T , v|· œ V (·)},

and Wh is the codomain of Ih, defined by:

Wh = {vh œ [L1(�h)]m; ’· œ Th, v|· œ P· }.

The space Wh is called an approximation space. We have abused the notation by implicitly
extending Ï·,i by zero outside · .
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Definition 5.7 (Conforming approximation). Let Wh be defined as previously and let V be a
Banach space. Wh is said to be V -conforming if Wh µ V .

5.3.3 From weak formulations to linear algebra
To set ideas on how to use the previous concepts, we shall explain the case of assembling a linear system
for the Poisson equation:

I
≠�u = f in �,

u = 0 on ˆ�,
(5.1)

where f œ L2(�). We show how to incorporate the local interpolation operator into the discretization
process and explain how to build element matrices, which are then assembled into the global sti�ness
matrix.

We start with the weak formulation of the Poisson equation by multiplying by a test function
v œ H1

0 (�), integrating over the domain �, and applying integration by parts. This gives:

’v œ H1
0 (�),

⁄

�
Òu · Òv dx =

⁄

�
fv dx, (5.2)

which is known as the weak formulation of (5.1).
To approximate the solution, we discretize the domain by using a finite element mesh T . Each element

· œ T is mapped from a reference element ·̂ via the transformation T· : ·̂ æ · . We assume that we are
endowed with a conforming finite element space Vh µ V , which is spanned by the local basis functions
{Ï·,i}

k

i=1 on each element · . Firstly, we decompose the integrals in (5.2), to write:

’v œ H1
0 (�),

ÿ

·œT

⁄

·

Òu · Òv dx =
ÿ

·œT

⁄

·

fv dx. (5.3)

Utilizing the local interpolation operator, the global approximate solution uh on each · is represented as:

uh|· =
kÿ

j=1
u·,jÏ·,j .

In this manner, for each element · , the weak form is restricted to · and test functions v = Ï·,i, leading
us to write the following:

ÿ

·œT

kÿ

j=1
u·,jA·

ij
=

ÿ

·œT

kÿ

j=1
u·,jb·

j
, 1 Æ i Æ k,

where the so called element matrix A· is defined by:

A·

ij
=

⁄

·

ÒÏ·,j · ÒÏ·,i dx.

Similarly, the element vector b· is:
b·

i
=

⁄

·

fÏ·,i dx.

After computing the element matrices A· and vectors b· for each element, we assemble them into the
global sti�ness matrix A and global load vector b. This is done by summing the contributions of each
element matrix and load vector into their corresponding locations in the global system:

A =
ÿ

·œT

A· , b =
ÿ

·œT

b· .

The global system of equations is then:
Au = b,

where A is the global sti�ness matrix, u is the vector of unknown coe�cients, b is the global mass vector.
This global system can be solved for the coe�cients u, which represent the solution in terms of the finite
element basis functions.
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5.4 DSL embedding via template metaprogramming
With the introduction of advanced metaprogramming tools in recent versions of C++, it has become
increasingly feasible to embed domain-specific languages (DSLs) tailored for finite element formulations
directly within the language. This is primarily enabled by the improved metaprogramming features
and cleaner syntax introduced in C++20, allowing developers to create expressive, e�cient, and flexible
abstractions that closely mirror the mathematical notation used in finite element methods.

The mathematical concepts discussed earlier can be e�ectively represented in a C++ library through
metaprogramming. In C++, metaprogramming facilitates the development of libraries where the code
naturally reflects the mathematical expressions of partial di�erential equations (PDEs). By leveraging
templates, ‘constexpr‘, and operator overloading, developers can define custom types representing vectors,
matrices, and di�erential operators in a way that closely aligns with their mathematical equivalents.
This not only improves code readability and maintainability but also enables powerful compile-time
optimizations. These optimizations can enhance performance by eliminating unnecessary computations
and selecting the most e�cient algorithms for specific problems, making them especially beneficial when
solving complex PDEs.

One of the primary advantages of implementing such a library in C++ is the significant performance
boost over libraries written in interpreted languages like Python. C++ is a compiled language, meaning
its code is directly translated into machine code that the CPU can execute, leading to much faster
execution times compared to Python’s line-by-line interpretation. Although high-performance Python
libraries exist—often relying on underlying C or C++ code—a direct C++ implementation avoids the
overhead associated with the Python interpreter. This is particularly important for large-scale simulations
and computationally intensive tasks, where performance is critical.

Rather than detailing the various classes of the library, which are numerous and already documented
at the link provided at the start of this chapter, the following sections will present examples to illustrate
the library’s ease of use and key functionalities.

5.5 Code examples and illustrations
In this section, we will provide detailed code examples and illustrations demonstrating the practical
implementation of the concepts previously discussed. These examples will include the Poisson equation,
the Helmholtz equation, the case linear elasticity, a 2D shape optimization example. The examples will
guide you through the numerical implementation of each problem, from setting up the mesh and finite
element spaces to solving the system and applying boundary conditions.

5.5.1 The Poisson equation
In this tutorial, we walk through the implementation of the Poisson equation. We will focus on the weak
formulation of the Poisson equation in (5.1) and how this translates into a computational problem using
the Rodin library. Each code component is explained alongside the corresponding mathematical concept.
In the finite element method, we first derive the weak formulation of the problem. This has already been
done in (5.2). This weak form is the foundation for our computational approach. We will now translate
this into code using the Rodin framework.

The following C++ code implements the weak formulation of the Poisson equation using FEM. The
Rodin library provides functionalities to handle meshes, define variational forms, and solve linear systems.

Listing 1: examples/PDEs/Poisson.cpp: C++ code for solving the Poisson equation.

#include <Rodin/Solver.h>
#include <Rodin/Geometry.h>
#include <Rodin/Variational.h>

using namespace Rodin;
using namespace Rodin::Geometry;
using namespace Rodin::Variational;

int main(int, char**)
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{
// Step 1: Create a mesh
Mesh mesh;
mesh = mesh.UniformGrid(Polytope::Type::Triangle, 16, 16);
mesh.getConnectivity().compute(1, 2);

// Step 2: Define finite element space
P1 vh(mesh);

// Step 3: Define trial and test functions
TrialFunction u(vh);
TestFunction v(vh);

// Step 4: Set up the Poisson problem
ScalarFunction f = 1;
Problem poisson(u, v);
poisson = Integral(Grad(u), Grad(v))

- Integral(f, v)
+ DirichletBC(u, Zero());

// Step 5: Solve the problem
Solver::SparseLU(poisson).solve();

// Step 6: Save the files for visualization
mesh.save("Poisson.mesh");
u.getSolution().save("Poisson.gf");

return 0;
}

Explanation of the code

Let us explain each piece of code in Listing 1.

1. We discretize the domain into triangular elements using UniformGrid.

Mesh mesh;
mesh = mesh.UniformGrid(Polytope::Type::Triangle, 16, 16);
mesh.getConnectivity().compute(1, 2);

The domain is divided into a 16x16 grid of triangles, and the mesh connectivity is computed to
handle relationships between elements.

2. We define the P1 finite element space over the mesh.

P1 vh(mesh);

This space contains linear functions over each triangular element.

3. We define the trial and test functions of the bilinear and linear form of the weak formulation (5.2).
The trial function u represents the unknown solution, while the test function v is used in the
variational formulation:

TrialFunction u(vh);
TestFunction v(vh);

4. We define the weak form of the Poisson equation using integration by parts and apply homogeneous
Dirichlet boundary conditions:
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Problem poisson(u, v);
poisson = Integral(Grad(u), Grad(v))

- Integral(f, v)
+ DirichletBC(u, Zero());

In Rodin, we use a FreeFem++ like approach, in which we assume that a variational problem is
defined by some bilinear form a(u, v) and a linear form b(v). Then, we consider that the weak
formulation of the problem is:

Find u œ Vh s.t. ’v œ Vh, a(u, v) ≠ b(v) = 0.

In this case the problem definition is given to us by the left-hand side of the expression above. Here
in the example, we have the equivalence between code and mathematics:

Integral(Grad(u), Grad(v)) Ωæ a(u, v) =
s

� Òu · Òv dx,

Integral(f, v) Ωæ b(v) =
s

� fv dx

To impose the Dirichlet boundary condition, the library provides the DirichletBC class, which is
used in the Problem definition. Then, the expression DirichletBC(u, Zero()) enforces u = 0 on
the boundary.

5. We solve the system using the sparse LU decomposition.

Solver::SparseLU(poisson).solve();

6. We save the files for visualization:

mesh.save("Poisson.mesh");
u.getSolution().save("Poisson.gf");

Rodin uses the MFEM format [32] to write the meshes and functions. One can then visualize these
using the GLVis program [211]. The result of the previous code example is visible in Fig. 5.3.

Figure 5.3: Visualization of the solution found by Listing 1.

5.5.2 The Helmholtz equation
In this tutorial, we will implement the Helmholtz equation using the Finite Element Method in C++.
The Helmholtz equation is commonly used to describe wave propagation phenomena in acoustics,
electromagnetics, and quantum mechanics. The equation is given by:

≠�u ≠ k2u = f in �
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with boundary conditions, where � is the Laplace operator, u is the complex-valued wave function, k
is the wave number, and f is a given source function. The solution to the Helmholtz equation involves
complex numbers because it models oscillatory wave behavior. Rodin natively supports the use of complex
numbers, which makes the implementation of the Helmholtz equation straightforward. The Helmholtz
equation in variational (weak) form is derived by multiplying the equation by a test function v and
integrating by parts. The weak formulation is:

⁄

�
Òu · Òv dx ≠ k2

⁄

�
uv dx =

⁄

�
fv dx ’v œ H1

0 (�)

where Òu · Òv represents the gradient of the trial and test functions, and the second term includes the
wave number k. This form is suitable for discretization using FEM.

Listing 2: examples/PDEs/Helmholtz.cpp: C++ code for solving the Poisson equation.

#include <Rodin/Solver.h>
#include <Rodin/Geometry.h>
#include <Rodin/Variational.h>

using namespace Rodin;
using namespace Rodin::Solver;
using namespace Rodin::Geometry;
using namespace Rodin::Variational;

static constexpr Real waveLength = 0.5;
static constexpr Real pi = Math::Constants::pi();
const Real waveNumber = 2 * Math::Constants::pi() / waveLength;

int main(int, char**)
{

// Build a mesh
Mesh mesh;
mesh = mesh.UniformGrid(Polytope::Type::Triangle, { 64, 64 });
mesh.getConnectivity().compute(1, 2);
mesh.scale(1.0 / 63.0);

// Functions
P1<Complex> vh(mesh);

ComplexFunction f =
[&](const Point& p)
{

return Complex(1, 1) * waveNumber * waveNumber * cos(waveNumber * p.x()
) * cos(waveNumber * p.y());

};

TrialFunction u(vh);
TestFunction v(vh);

Problem helmholtz(u, v);
helmholtz = Integral(Grad(u), Grad(v))

- waveNumber * waveNumber * Integral(u, v)
- Integral(f, v)
;

CG(helmholtz).solve();

GridFunction uRe(rh);
GridFunction uIm(rh);
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uRe = Re(u.getSolution());
uIm = Im(u.getSolution());

// Save solution
uRe.save("uRe.gf");
uIm.save("uIm.gf");
mesh.save("Grid.mesh");

return 0;
}

Explanation of the code

Let us explain each piece of code in Listing 2.

1. We start by building a triangular mesh that discretizes the domain.

Mesh mesh;
mesh = mesh.UniformGrid(Polytope::Type::Triangle, { 64, 64 });
mesh.getConnectivity().compute(1, 2);
mesh.scale(1.0 / 63.0);

This creates a 64x64 grid of triangles. The mesh is scaled to fit within the desired domain.

2. The wave number k is calculated based on the wavelength ⁄.

static constexpr Real waveLength = 0.5;
const Real waveNumber = 2 * Math::Constants::pi() / waveLength;

The wave number determines the frequency of oscillation.

3. We define the finite element space P1 for complex-valued functions.

P1<Complex> vh(mesh);

4. The source function f generates an oscillating wave over the domain.

ComplexFunction f =
[&](const Point& p)
{

return Complex(p.x(), 1) * waveNumber * waveNumber
* cos(waveNumber * p.x()) * cos(waveNumber * p.y());

};

5. We define the unknown wave function u and the test function v.

TrialFunction u(vh);
TestFunction v(vh);

6. The variational form of the Helmholtz equation is constructed.

Problem helmholtz(u, v);
helmholtz = Integral(Grad(u), Grad(v))

- waveNumber * waveNumber * Integral(u, v)
- Integral(f, v);

This corresponds to the weak form of the Helmholtz equation.

7. We solve the system using the Conjugate Gradient (CG) method.

CG(helmholtz).solve();

8. Finally, we extract the real and imaginary parts of the solution and save them.
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GridFunction uRe(rh);
GridFunction uIm(rh);

uRe = Re(u.getSolution());
uIm = Im(u.getSolution());

uRe.save("uRe.gf");
uIm.save("uIm.gf");
mesh.save("Grid.mesh");

The results of this code can be visaualized in Fig. 5.4.

5.5.3 The linear elasticity equation
The linear elasticity equation describes how materials deform under applied forces. It is governed by
Hooke’s Law and is used to compute the displacement field of an elastic body. The equation is expressed
as:

≠Ò · ‡ = f in �

where ‡ is the stress tensor, related to the strain tensor Á(u) via the material’s constitutive law (Hooke’s
Law), f is the body force (e.g., gravitational or external forces) and u is the displacement vector field,
which we aim to compute.

In linear elasticity, the stress tensor ‡ is related to the strain tensor Á(u) by the Lamé coe�cients ⁄
and µ:

‡(u) = ⁄ tr(Á(u))I + 2µÁ(u)

where: ⁄ and µ are the Lamé coe�cients, material-dependent constants. Additionally, Á(u) = 1
2 (Òu+ÒuT )

is the strain tensor. The weak form of the linear elasticity equation can be written as:
⁄

�
‡(u) : Á(v) dx =

⁄

�
f · v dx +

⁄

�N

g · v dx

Here, v is the test function, g is the Neumann boundary condition (traction force), and �N is the part of
the boundary where Neumann conditions are applied. Dirichlet boundary conditions are enforced on �D.

The following code demonstrates the implementation of the linear elasticity equation using the Rodin
library. We solve for the displacement field u of a material subjected to a downward pulling force. For
simplicity we assume that f = 0.

Listing 3: examples/PDEs/Elasticity.cpp: C++ code for solving the linear elasticity equation.

#include <Rodin/Solver.h>
#include <Rodin/Geometry.h>
#include <Rodin/Variational.h>
#include <Rodin/Variational/LinearElasticity.h>

using namespace Rodin;
using namespace Rodin::Geometry;
using namespace Rodin::Variational;

int main(int argc, char** argv)
{

const char* meshFile = "../resources/examples/PDEs/Elasticity.mfem.mesh";

// Define boundary attributes
Attribute Gamma = 1, GammaD = 2, GammaN = 3, Gamma0 = 4;

// Load mesh
Mesh mesh;
mesh.load(meshFile);
mesh.getConnectivity().compute(1, 2);

201



CHAPTER 5. RODIN: A NUMERICAL C++20 LIBRARY FOR SHAPE AND TOPOLOGY
OPTIMIZATION

// Functions
size_t d = mesh.getSpaceDimension();
P1 fes(mesh, d);

// Lamé coefficients
const Real lambda = 0.5769, mu = 0.3846;

// Pull force
VectorFunction g{0, -1};

// Define problem
TrialFunction u(fes);
TestFunction v(fes);

Problem elasticity(u, v);
elasticity = LinearElasticityIntegral(u, v)(lambda, mu)

- BoundaryIntegral(g, v).over(GammaN)
+ DirichletBC(u, VectorFunction{0, 0}).on(GammaD);

Solver::CG(elasticity).solve();

// Save solution
u.getSolution().save("Elasticity.gf");
mesh.save("Elasticity.mesh");

return 0;
}

Explanation of the code

1. The following headers bring in the necessary functionalities from the Rodin library for solving the
elasticity problem:

#include <Rodin/Solver.h>
#include <Rodin/Geometry.h>
#include <Rodin/Variational.h>
#include <Rodin/Variational/LinearElasticity.h>

2. We define boundary attributes to apply Dirichlet and Neumann conditions and load the mesh from
a file.

Attribute Gamma = 1, GammaD = 2, GammaN = 3, Gamma0 = 4;
Mesh mesh;
mesh.load(meshFile);
mesh.getConnectivity().compute(1, 2);

Here attribute 2 corresponds to �D and attribute 3 to �N .

3. We define a finite element space P1 for the displacement vector field:

size_t d = mesh.getSpaceDimension();
P1 fes(mesh, d);

4. The material properties, such as the Lamé coe�cients ⁄ and µ, define the relationship between
stress and strain in the material.

const Real lambda = 0.5769, mu = 0.3846;

5. We define a downward force (e.g., gravity) acting on the material.

VectorFunction f{0, -1};

202



5.5. CODE EXAMPLES AND ILLUSTRATIONS

6. We define the trial and test functions, set up the variational form of the elasticity equation, and
apply the boundary conditions:

TrialFunction u(fes);
TestFunction v(fes);

Problem elasticity(u, v);
elasticity = LinearElasticityIntegral(u, v)(lambda, mu)

- BoundaryIntegral(f, v).over(GammaN)
+ DirichletBC(u, VectorFunction{0, 0}).on(GammaD);

7. The Conjugate Gradient solver is used to solve the linear system:

Solver::CG(elasticity).solve();

8. Finally, we save the computed displacement field and mesh for post-processing:

u.getSolution().save("Elasticity.gf");
mesh.save("Elasticity.mesh");

The solution output by the code is presented in Fig. 5.5.

5.5.4 The level-set cantilever optimization in 2D
This tutorial covers the implementation of the classical 2D level-set cantilever example, which is described
in Section 1.6 of Chapter 1, using the finite element method and the Rodin library. The goal is to
minimize the compliance (maximize sti�ness) of a cantilever structure subjected to external loads, while
optimizing its shape using a level set method.

The level set method represents the domain implicitly using a function (signed distance function),
which is iteratively updated to track the evolving boundary of the structure during the optimization
process.

Below is the C++ code implementing the level set cantilever optimization.

Listing 4: examples/ShapeOptimization/LevelSetCantilever2D.cpp: C++ code for performing the
body-fitted shape optimization of a cantilever.

#include <Rodin/Solver.h>
#include <Rodin/Geometry.h>
#include <Rodin/Variational.h>
#include <Rodin/Variational/LinearElasticity.h>
#include <RodinExternal/MMG.h>

using namespace Rodin;
using namespace Rodin::Geometry;
using namespace Rodin::External;
using namespace Rodin::Variational;

using FES = VectorP1<Mesh<Context::Sequential>>;

// Define interior and exterior for level set discretization
static constexpr Attribute Interior = 1, Exterior = 2;

// Define boundary attributes
static constexpr Attribute Gamma0 = 1, GammaD = 2, GammaN = 3, Gamma = 4;

// Lamé coefficients
static constexpr double mu = 0.3846;
static constexpr double lambda = 0.5769;

203



CHAPTER 5. RODIN: A NUMERICAL C++20 LIBRARY FOR SHAPE AND TOPOLOGY
OPTIMIZATION

// Optimization parameters
static constexpr size_t maxIt = 300;
static constexpr double hmax = 0.05;
static constexpr double hmin = 0.1 * hmax;
static constexpr double hausd = 0.5 * hmin;
static constexpr double ell = 0.4;
const constexpr Real dt = 4 * (hmax - hmin);
static constexpr double alpha = dt;

// Compliance
inline Real compliance(const GridFunction<FES>& w)
{

auto& vh = w.getFiniteElementSpace();
TrialFunction u(vh);
TestFunction v(vh);
BilinearForm bf(u, v);
bf = LinearElasticityIntegral(u, v)(lambda, mu);
return bf(w, w);

};

int main(int, char**)
{

const char* meshFile = "../resources/examples/ShapeOptimization/LevelSetCantilever2D.mfem.mesh";

// Load mesh
MMG::Mesh th;
th.load(meshFile);
MMG::Optimizer().setHMax(hmax).setHMin(hmin).optimize(th);

// Optimization loop
std::vector<double> obj;
std::ofstream fObj("obj.txt");
for (size_t i = 0; i < maxIt; i++)
{

th.getConnectivity().compute(1, 2);

Alert::Info() << "----- Iteration: " << i << Alert::Raise;

Alert::Info() << " | Trimming mesh." << Alert::Raise;
SubMesh trimmed = th.trim(Exterior);
trimmed.save("Omega.mesh");

Alert::Info() << " | Building finite element spaces." << Alert::Raise;
const size_t d = th.getSpaceDimension();
P1 sh(th);
P1 vh(th, d);

P1 shInt(trimmed);
P1 vhInt(trimmed, d);

Alert::Info() << " | Solving state equation." << Alert::Raise;
auto f = VectorFunction{0, -1};
TrialFunction u(vhInt);
TestFunction v(vhInt);

// Elasticity equation
Problem elasticity(u, v);
elasticity = LinearElasticityIntegral(u, v)(lambda, mu)
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- BoundaryIntegral(f, v).over(GammaN)
+ DirichletBC(u, VectorFunction{0, 0}).on(GammaD);

Solver::CG(elasticity).solve();

Alert::Info() << " | Computing shape gradient." << Alert::Raise;
auto jac = Jacobian(u.getSolution());
jac.traceOf(Interior);
auto e = 0.5 * (jac + jac.T());
auto Ae = 2.0 * mu * e + lambda * Trace(e) * IdentityMatrix(d);
auto n = FaceNormal(th);
n.traceOf(Interior);

// Hilbert extension-regularization procedure
TrialFunction g(vh);
TestFunction w(vh);
Problem hilbert(g, w);
hilbert = Integral(alpha * alpha * Jacobian(g), Jacobian(w))

+ Integral(g, w)
- FaceIntegral(Dot(Ae, e) - ell, Dot(n, w)).over(Gamma)
+ DirichletBC(g, VectorFunction{0, 0, 0}).on(GammaN);

Solver::CG(hilbert).solve();
auto& dJ = g.getSolution();
dJ.save("dJ.gf");
vh.getMesh().save("dJ.mesh");

// Update objective
double objective = compliance(u.getSolution()) + ell * th.getVolume(Interior);
obj.push_back(objective);
fObj << objective << "\n";
fObj.flush();
Alert::Info() << " | Objective: " << obj.back() << Alert::Raise;
Alert::Info() << " | Distancing domain." << Alert::Raise;

P1 dh(th);
auto dist = MMG::Distancer(dh).setInteriorDomain(Interior)

.distance(th);

// Advect the level set function
Alert::Info() << " | Advecting the distance function." << Alert::Raise;
GridFunction norm(sh);
norm = Frobenius(dJ);
dJ /= norm.max();

MMG::Advect(dist, dJ).step(dt);

// Recover the implicit domain
Alert::Info() << " | Meshing the domain." << Alert::Raise;

th = MMG::ImplicitDomainMesher().split(Interior, {Interior, Exterior})
.split(Exterior, {Interior, Exterior})
.setRMC(1e-6)
.setHMax(hmax)
.setHMin(hmin)
.setHausdorff(hausd)
.setAngleDetection(false)
.setBoundaryReference(Gamma)
.setBaseReferences(GammaD)
.discretize(dist);
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MMG::Optimizer().setHMax(hmax)
.setHMin(hmin)
.setHausdorff(hausd)
.setAngleDetection(false)
.optimize(th);

}

Alert::Info() << "Saved final mesh to Omega.mesh" << Alert::Raise;

return 0;
}

Explanation of the code

Let us explain the main parts of the code in Listing 4.

1. First, we include all the necessary functionality, along with setting up the namespaces.

#include <Rodin/Solver.h>
#include <Rodin/Geometry.h>
#include <Rodin/Variational.h>
#include <Rodin/Variational/LinearElasticity.h>
#include <RodinExternal/MMG.h>

using namespace Rodin;
using namespace Rodin::Geometry;
using namespace Rodin::External;
using namespace Rodin::Variational;

using FES = VectorP1<Mesh<Context::Sequential>>;

2. We define the system parameters and attributes. Here, we assume that the mesh has two materials
which represent the interior and exterior of the structure.

// Define interior and exterior for level set discretization
static constexpr Attribute Interior = 1, Exterior = 2;

// Define boundary attributes
static constexpr Attribute Gamma0 = 1, GammaD = 2, GammaN = 3, Gamma = 4;

// Lamé coefficients
static constexpr double mu = 0.3846;
static constexpr double lambda = 0.5769;

// Optimization parameters
static constexpr size_t maxIt = 300;
static constexpr double hmax = 0.05;
static constexpr double hmin = 0.1 * hmax;
static constexpr double hausd = 0.5 * hmin;
static constexpr double ell = 0.4;
const constexpr Real dt = 4 * (hmax - hmin);
static constexpr double alpha = dt;

3. We define the function to compute the compliance.

// Compliance
inline Real compliance(const GridFunction<FES>& w)
{

auto& vh = w.getFiniteElementSpace();
TrialFunction u(vh);

206



5.5. CODE EXAMPLES AND ILLUSTRATIONS

TestFunction v(vh);
BilinearForm bf(u, v);
bf = LinearElasticityIntegral(u, v)(lambda, mu);
return bf(w, w);

};

4. We load the initial mesh from a file and optimize its quality using the MMG optimizer.

MMG::Mesh th;
th.load(meshFile);
MMG::Optimizer()./* Set parameters */ .optimize(th);
th.save("Omega0.mesh", IO::FileFormat::MEDIT);

5. The main loop iterates over the maximum number of iterations (maxIt) to trim the exterior of the
domain, solve the elasticity equation, and compute the shape gradient.

for (size_t i = 0; i < maxIt; i++)
{
// Main loop
}

6. The mesh is trimmed to build finite element spaces on the whole computational domain, and on the
actual shape itself.

SubMesh trimmed = th.trim(Exterior);
trimmed.save("Omega.mesh");

const size_t d = th.getSpaceDimension();
P1 sh(th);
P1 vh(th, d);

P1 shInt(trimmed);
P1 vhInt(trimmed, d);

7. The state equation (linear elasticity) is solved at each iteration, over the subspace, to compute the
displacement field under the applied forces.

Problem elasticity(u, v);
elasticity = LinearElasticityIntegral(u, v)(lambda, mu)

- BoundaryIntegral(f, v).over(GammaN)
+ DirichletBC(u, VectorFunction{0, 0}).on(GammaD);

Solver::CG(elasticity).solve();

8. We compute the shape gradient, which drives the shape optimization process, and apply a Hilbert
regularization for stability.

auto jac = Jacobian(u.getSolution());
jac.traceOf(Interior);
auto e = 0.5 * (jac + jac.T());
auto Ae = 2.0 * mu * e + lambda * Trace(e) * IdentityMatrix(d);
auto n = FaceNormal(th);
n.traceOf(Interior);

// Hilbert extension-regularization procedure
TrialFunction g(vh);
TestFunction w(vh);
Problem hilbert(g, w);
hilbert = Integral(alpha * alpha * Jacobian(g), Jacobian(w))

+ Integral(g, w)
- FaceIntegral(Dot(Ae, e) - ell, Dot(n, w)).over(Gamma)
+ DirichletBC(g, VectorFunction{0, 0, 0}).on(GammaN);

Solver::CG(hilbert).solve();
auto& dJ = g.getSolution();
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9. At the end of each iteration, the level set function is advected, and the implicit domain is remeshed
for the next iteration.

MMG::Advect(dist, dJ).step(dt);
th = MMG::ImplicitDomainMesher().split(Interior, {Interior, Exterior})

.setHMax(hmax)

.discretize(dist);

The are those presented in Section 1.6.
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(a) Real part of the solution yielded by Listing 2.

(b) Imaginary part of the solution yielded by Listing 2.

Figure 5.4: Visualization of the solution outputted in the Helmholtz example

209



CHAPTER 5. RODIN: A NUMERICAL C++20 LIBRARY FOR SHAPE AND TOPOLOGY
OPTIMIZATION

Figure 5.5: Linear elasticity solution outputted by Listing 3
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Conclusions and perspectives

In this final section, we reflect on the contributions made through the development of advanced shape and
topology optimization techniques, particularly on surfaces, and outline key directions for future research.
In Chapter 1, we reviewed classical methods in shape and topology optimization, and in Section 1.8, we
compared previous work with our own contributions, highlighting a substantial theoretical and practical
gap in the general field of shape optimization on surfaces.

To address this gap, in Chapter 2, we developed a general framework for performing geometrical shape
optimization of domains on Riemannian manifolds. In this chapter, we presented various results commonly
used when computing shape derivatives, but due to time constraints, we were unable to prove every
relevant result found in classical literature. This presents an area for future work. For example, exploring
the relationship between shape derivatives and tubular neighborhoods o�ers promising avenues for deeper
theoretical insights. Theoretical results such as Theorem 2.4 and Proposition 2.2 describe the structure of
shape derivatives and show that they primarily capture local information near the shape. These results
also reveal the connection with the signed distance function, suggesting the potential for a unified theory
of geometrical shape optimization that integrates these recurring concepts. Future work could focus
on establishing structure theorems for the shape derivative J Õ(�)(◊) of submanifolds � of codimension
greater than 1, where the vector field ◊ is tangential to the ambient manifold M . Another promising
direction involves fully applying this theory to shells, which can be regarded as curved Riemannian
manifolds, providing the necessary tools for the intrinsic optimization of regions G µ M on shells.

In Chapter 3, we proposed an e�cient numerical framework for tracking arbitrarily large evolutions of
a region G(t) embedded within a fixed two- or three-dimensional surface S. Our method, Algorithm 2,
hinges on the combination of an explicit representation of G(t) using a high-quality mesh for precise
geometric and mechanical computations, with the level set method to capture potentially dramatic
motion. The core of this approach is a set of e�cient numerical algorithms that allow seamless transitions
between these representations. Beyond numerical validation, we demonstrated its e�ectiveness in two
physical applications: the evolution of a fire front under a velocity field depending on its geometric
features and those of the landscape surface S in Section 3.5, and its use in Chapter 4, particularly in
Section 4.2, where it was applied to optimize the region of the boundary S = ˆ� of a 3D domain �
with homogeneous Dirichlet boundary conditions in thermal mechanics. These developments open the
door to numerous applications. For instance, building upon previous work [108], we extended the model
example in Section 4.2.4 to various mechanical contexts, including linearly elastic structures, where
optimizing regions supporting boundary conditions aids in designing fixture systems. Future work in this
area could apply these methods to problems such as precision agriculture [304, 294], where one tracks
a patch of land obeying specific agricultural metrics, using terrain mesh modeling and crop evolution
tracking. Another relevant application is vegetation tracking [193], where the evolution of vegetated areas
is tracked alongside observable quantities such as moisture and density. Modern approaches to vegetation
tracking could be used in restoration solutions [266]. From a more mechanical perspective, and in line
with the recent monograph [101], on the longer term, we wish to investigate the reinforcement and design
of openings in shell structures, whose delicate mechanical equations could benefit from the datum of a
high-quality, body-fitted computational meshes.

In Chapter 4, building on the results from Chapter 3 and the recent contribution [57], we introduced
and applied the concept of topological derivatives specifically for the optimization of regions that support
boundary conditions. Throughout Sections 4.7, 4.11, 4.13 and 4.14, we provided various numerical
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examples across di�erent physical contexts, each o�ering further opportunities for enhancement. For
example, the cathode-anode partitioning problem in Section 4.11 could be improved by incorporating the
full Navier-Stokes and magnetic field coupling model, yielding more accurate designs that better reflect
the true physical systems. In the acoustic cloaking problem discussed in Section 4.7, we encountered
limitations related to mesh resolution and execution time. A finer mesh would enable better visualization
of the scattered and total fields, but would introduce new challenges, such as increased computational
time and memory constraints. The structural optimization problems in Sections 4.13 and 4.14 could also
be refined by introducing more realistic physical constraints and scenarios that pose real-world challenges.
For example, the clamp-locator problem could be reformulated to focus on finding stable configurations
for securing a workpiece in place, ultimately leading to the design of an “intelligent fixing system.” In this
context, we refer to [221], which provides modern insights into such systems. More broadly, the formal
techniques described in this chapter can be extended to derive topological sensitivities for other equations
and boundary conditions. A particularly promising area of interest is fluid mechanics, where optimizing
slip and no-slip boundary conditions (see [280] for definitions) could be applied to hydrophobic surfaces to
improve the tribological performance of sliding bearings. This could enhance factors such as load-carrying
capacity and friction reduction [346]. Additionally, these techniques could be applied to the optimization
of journal bearings [98], a type of bearing that supports a rotating shaft, allowing smooth rotation within
a stationary housing.

Regarding our numerical library Rodin, we aim to refine the developed methods for practical, large-scale
applications and extend them to address more complex, real-world challenges across various industries.
Despite its numerical success and validation, Rodin is still in its early stages. Many API methods have
already been defined, with base functionality documented and established, but the library still needs to
scale e�ectively for broader use. While Rodin currently supports native multithreading, this is insu�cient
at larger scales. To fully utilize high-performance computing, we must implement data partitioning for key
structures, such as meshes and finite element spaces, to enable their use in distributed environments like
clusters. Integration with established mesh partitioning tools, such as METIS [200] and Scotch [263], is
necessary for this scaling e�ort. We also plan to integrate Rodin with other high-performance computing
libraries like PETSc [40] and MFEM [32] for the e�cient assembly and solution of large distributed linear
systems. Furthermore, incorporating modern open-source finite element libraries, such as Basix [288],
will enable the use of a wide variety of finite elements, including those of arbitrary order, and streamline
integration with Rodin’s infrastructure. The ultimate objective is to implement a full de Rham complex
(see [35]), covering approximation spaces that include H1, suitable for problems requiring square-integrable
derivatives, H(div), which handles fields where the divergence operator plays a crucial role, and H(curl),
important for vector fields with square-integrable curl, such as those in electromagnetism. L2, representing
square-integrable functions, also forms the foundational space within this structure. Due to Rodin’s
software architecture, where complexity is abstracted behind a native high-level domain-specific language
in C++, developers will have access to a user-friendly interface without needing to manage low-level
details. This approach will enhance integration with other C/C++ tools, improving development speed
and usability.

In conclusion, the main contribution of this work aligns with the broader objectives of research in
shape optimization:

To develop robust algorithms capable of handling extreme geometries and to create a unified framework
that integrates shape, topology, and material optimization into one cohesive process.

Through the theory, practice, and implementation presented in this manuscript, we believe that this work
has contributed meaningfully toward this goal.
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[28] M. Ambroz, M. Balažovjech, M. Medl’a, and K. Mikula, Numerical modeling of wildland
surface fire propagation by evolving surface curves, Advances in Computational Mathematics, 45
(2019), pp. 1067–1103.

[29] H. B. Ameur, M. Burger, and B. Hackl, Level set methods for geometric inverse problems in
linear elasticity, Inverse Problems, 20 (2004), p. 673.

[30] H. Ammari and H. Kang, Polarization and moment tensors: with applications to inverse problems
and e�ective medium theory, vol. 162, Springer Science & Business Media, 2007.
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[105] C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on
adapted triangulation, Calcolo, 49 (2012), pp. 193–219.

[106] C. Dapogny, P. Frey, and A. Froelhy, ISCD Toolbox, https://github.com/ISCDtoolbox,
2019.

[107] C. Dapogny, P. Frey, F. Omnes, and Y. Privat, Geometrical shape optimization in fluid
mechanics using freefem++, Structural and Multidisciplinary Optimization, 58 (2018), pp. 2761–
2788.

[108] C. Dapogny, N. Lebbe, and E. Oudet, Optimization of the shape of regions supporting boundary
conditions, Numerische Mathematik, 146 (2020), pp. 51–104.

[109] C. Dapogny, B. Levy, and E. Oudet, A lagrangian shape and topology optimization framework
based on semi-discrete optimal transport, arXiv preprint arXiv:2409.07873, (2024).

[110] M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of
solutions, vol. 1341, Springer, 2006.

[111] P. J. Davis and P. Rabinowitz, Methods of numerical integration, Courier Corporation, 2007.

[112] T. A. Davis, Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method, ACM
Transactions on Mathematical Software (TOMS), 30 (2004), pp. 196–199.

[113] I. Dayyani, A. Shaw, E. S. Flores, and M. Friswell, The mechanics of composite corrugated
structures: A review with applications in morphing aircraft, Composite Structures, 133 (2015),
pp. 358–380.

[114] F. De Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape
optimization, SIAM journal on control and optimization, 45 (2006), pp. 343–367.

[115] P. De Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Transactions
of the American Mathematical Society, 347 (1995), pp. 1533–1589.

[116] M. C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics, analysis, di�erential calculus,
and optimization, SIAM, 2011.

[117] Y. Deng, W. Zhang, Z. Liu, J. Zhu, and J. G. Korvink, Topology optimization for surface
flows, Journal of Computational Physics, 467 (2022), p. 111415.

[118] Y. Deng, T. Zhou, Z. Liu, Y. Wu, S. Qian, and J. G. Korvink, Topology optimization of
electrode patterns for electroosmotic micromixer, International Journal of Heat and Mass Transfer,
126 (2018), pp. 1299–1315.

218



BIBLIOGRAPHY

[119] J. Desai, A. Faure, G. Michailidis, G. Parry, and R. Estevez, Topology optimization in
acoustics and elasto-acoustics via a level-set method, Journal of Sound and Vibration, 420 (2018),
pp. 73–103.

[120] D. A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, vol. 69,
Springer Science & Business Media, 2011.

[121] M. P. Do Carmo, Di�erential geometry of curves and surfaces: revised and updated second edition,
Courier Dover Publications, 2016.

[122] M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry, vol. 115, Birkhäuser Boston,
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[124] G. Doğan, Shape calculus for shape energies in image processing, arXiv preprint arXiv:1307.5797,
(2013).
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Appendix A

Supporting material

A.1 Useful identities for the computation of shape derivatives
The following identities are obtained by use of Green’s formulas (Proposition C.1) and are used to remove
the volumetric terms from the shape derivative expression. We assume that � µ Rn is a bounded Lipschitz
domain.

Proposition A.1. Let j œ C1(Rn), “ œ CŒ(�), u œ H2(�), and ◊ œ W 1,Œ(Rd, Rd). Then all the
following identities are valid:

1.
s

� j(Òu)Ò · ◊ dx =
s

ˆ� j(Òu)◊ · n ds ≠
s

� ◊ · Ò
2ujÕ(Òu),

2.
s

� Ò◊T
Òu · jÕ(Òu) dx =

s
ˆ�(◊ · Òu)jÕ(Òu) · n ds ≠

s
� Ò · jÕ(Òu)◊ · Òu dx ≠

s
� Ò

2ujÕ(Òu) · ◊ dx,

3.
s

�(Ò · ◊)(“Òu · Òp) dx =
s

ˆ� “Òu · Òp◊ · n ds ≠
s

� “Ò(Òu · Òp) dx ≠
s

� Òu · ÒpÒ“ · ◊ dx,

4.
s

� Ò◊(“Òu) · Òp dx =
s

ˆ� ◊ · Òp“
ˆu

ˆn
ds ≠

s
� Ò

2p“Òu · ◊ dx,

5.
s

� Ò◊T (“Òu) · Òp dx =
s

ˆ� ◊ · Òu“
ˆp

ˆn
ds ≠

s
� Ò · jÕ(Òu)◊ · Òudx ≠

s
� Ò

2u(“Òp) · ◊ dx.

A.2 Proofs

A.2.1 Proof of Proposition 4.4
Proof. For simplicity we set uÁ = uC,A,Á solution to (4.82).

Step 1. We compute the Lagrangian derivative. For ◊ œ � with norm ||◊||W 1,Œ(Rd,Rd) < 1, the
function u�◊,Á œ H1(�◊) is the unique solution to the variational problem:

’v œ H1(�◊),
⁄

�◊

“Òu�◊,Á · Òv dx +
⁄

ˆ�◊

1
Á

A
h

A
dˆ�◊

�A◊

Á

B
+ h

A
dˆ�◊

�C ◊

Á

BB
u�◊,Áv ds =

⁄

ˆ�◊

1
Á

h

3
d�A◊

Á

4
uinv ds,

Let us introduce the transported mapping:

W 1,Œ(Rd, Rd) æ H1(�)
◊ ‘æ uÁ(◊) := u�◊,Á ¶ (Id + ◊).

231



APPENDIX A. SUPPORTING MATERIAL

Performing a change of variables (see Corollaries C.1 and C.2) and choosing test functions of the form
v¶(Id+◊)≠1, v œ H1(�), we obtain the following variational characterization for uÁ(◊). For all v œ H1(�):

⁄

�
A(◊)ÒuÁ(◊) · Òv dx

+
⁄

ˆ�

1
Á

A
h

A
dˆ�◊

�A◊
¶ (Id + ◊)

Á

B
+ h

A
dˆ�◊

�C ◊
¶ (Id + ◊)

Á

BB
det(I + Ò◊)|(I + Ò◊)≠T n|uÁ(◊)v ds

=
⁄

ˆ�

1
Á

h

A
dˆ�◊

�A◊
¶ (Id + ◊)

Á

B
det(I + Ò◊)|(I + Ò◊)≠T n|uin ¶ (Id + ◊)v ds,

where:
A(◊) := “ ¶ (Id + ◊)| det(I + Ò◊)|(I + Ò◊)≠1(I + Ò◊)≠T .

The Fréchet di�erentiability of the map ◊ ‘æ uÁ(◊) is typically established via the implicit function
theorem (see [15, 184]) but for the sake of simplicity we omit this part of the proof. Di�erentiating both
sides with respect to ◊ at 0 yields the characterization for the “Lagrangian” derivative ů�,Á(◊) of u�,Á, i.e.
the derivative of the mapping ◊ ‘æ uÁ(◊), for all v œ H1(�),

⁄

�
“Òů�,Á(◊) · Òv dx +

⁄

ˆ�
(hC,Á + hA,Á)̊uÁ(◊)v ds =

≠

⁄

�
(ÒuÁ · Òv)(Ò“ · ◊) dx ≠

⁄

�
(Ò · ◊I ≠ Ò◊ ≠ Ò◊T )“ÒuÁ · Òv dx

≠

⁄

ˆ�
(Òˆ� · ◊)(hC,Á + hA,Á)uÁv ds

≠
1
Á2

⁄

ˆ�

A
hÕ

A
dˆ�

�C

Á

B
DÕ

C
(0)(◊) + hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊)

B
uÁv ds

+
⁄

ˆ�
((Òˆ� · ◊)uin + Òuin · ◊)hA,Áv ds

+ 1
Á2

⁄

ˆ�
hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊)uinv ds,

(A.1)

where we have used the following facts (see [184] for their statement and proof):

d
d◊

----
◊=0

det(I + Ò◊) = Ò · ◊,

d
d◊

----
◊=0

det(I + Ò◊)|(I + Ò◊)≠T nˆ�| = Òˆ� · ◊.

Step 2. Shape derivative of JÁ(�). We now calculate the derivative of the objective function JÁ(�);
for su�ciently small ◊ œ W 1,Œ(Rd, Rd), it holds:

JÁ(�◊) =
⁄

�
|det (I + Ò◊)| j((Òu�◊,Á) ¶ (Id + ◊)) dx

=
⁄

�
|det (I + Ò◊)| j((I + Ò◊)≠T

ÒuÁ(◊)) dx.

Hence, taking derivatives in this formula, we obtain:

J Õ

Á
(�)(◊) =

⁄

�
jÕ(ÒuÁ) · Òů�,Á(◊) dx +

⁄

�
j(ÒuÁ)Ò · ◊ dx ≠

⁄

�
Ò◊T

ÒuÁ · jÕ(ÒuÁ) dx.

Step 3. We reformulate this derivative by using the adjoint state. Consider the weak formulation for
the adjoint solution pÁ œ H1(�), given by:

’v œ H1(�),
⁄

�
“ÒpÁ · Òv dx +

⁄

ˆ�
(hC,Á + hA,Á)pÁv ds = ≠

⁄

�
jÕ(ÒuÁ) · Òv dx.
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Selecting v = ůÁ(◊) as a test function results in the following expression:
⁄

�
“ÒpÁ · ÒůÁ(◊) dx +

⁄

ˆ�
(hC,Á + hA,Á)pÁůÁ(◊) ds = ≠

⁄

�
jÕ(ÒuÁ) · ÒůÁ(◊) dx.

On the other hand, opting for v = pÁ as a test function in (A.1) and combining it with the previous
equation leads to the volumetric expression of the shape derivative:

J Õ(�)(◊) =
⁄

�
j(Òu�,Á)Ò · ◊ dx ≠

⁄

�
Ò◊T

ÒuÁ · jÕ(ÒuÁ) dx +
⁄

�
(ÒuÁ · Òp)(Ò“ · ◊) dx

+
⁄

�
(Ò · ◊I ≠ Ò◊ ≠ Ò◊T )“ÒuÁ · ÒpÁ dx

≠

⁄

ˆ�
((Òˆ� · ◊)uin + Òuin · ◊)hA,ÁpÁ ds

+
⁄

ˆ�
(Òˆ� · ◊)(hC,Á + hA,Á)uÁpÁ ds

+ 1
Á2

⁄

ˆ�

3
hÕ

3
d�C

Á

4
DÕ

C
(0)(◊) + hÕ

3
d�A

Á

4
DÕ

A
(0)(◊)

4
uÁpÁ ds

≠
1
Á2

⁄

ˆ�
hÕ

3
d�A

Á

4
DÕ

A
(0)(◊)uinpÁ ds,

(A.2)

Step 4. Derivation of the surface expression. Following multiple applications of integration by parts
(refer to Appendix A.1), one can verify the cancellation of the volumetric terms, resulting in the following
expression for the shape derivative:

J Õ

Á
(�)(◊) =

⁄

ˆ�
(j(ÒuÁ) ≠ “ÒuÁ · ÒpÁ) ◊ · nˆ� ds ≠ (I1

Á
≠ I2

Á
+ I3

Á
)

+ 1
Á2

⁄

ˆ�

A
hÕ

A
dˆ�

�C

Á

B
DÕ

C
(0)(◊) + hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊)

B
uÁpÁ ds

≠
1
Á2

⁄

ˆ�
hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊) uinpÁ ds,

where

I1
Á

:=
⁄

ˆ�
((Òˆ� · ◊)uin + Òuin · ◊)hA,ÁpÁ ds,

I2
Á

:=
⁄

ˆ�
(Òˆ� · ◊)(hC,Á + hA,Á)uÁpÁ ds,

I3
Á

:=
⁄

ˆ�

3
◊ · ÒpÁ“

ˆuÁ

ˆnˆ�
ds + ◊ · ÒuÁ

3
“

ˆpÁ

ˆnˆ�
≠ jÕ(ÒuÁ) · nˆ�

44
ds.

The integration of this expression towards tangential terms can be accomplished by employing Proposi-
tion C.2 and decomposing:

Òˆ�uin = Òuin ≠
ˆuin
ˆnˆ�

nˆ�,

Òˆ�uÁ = ÒuÁ ≠
ˆuÁ

ˆnˆ�
nˆ�,

Òˆ�pÁ = ÒpÁ ≠
ˆpÁ

ˆnˆ�
nˆ�.

(A.3)

Firstly, tangentially integrating the first term of I1
Á

by parts gives:

I1
Á

=
⁄

ˆ�
ŸhA,ÁuinpÁ ◊ · nˆ� ds +

⁄

ˆ�
hA,ÁpÁ

ˆuin
ˆnˆ�

◊ · nˆ� ds

≠

⁄

ˆ�
uinpÁÒˆ�hA,Á · ◊ ds ≠

⁄

ˆ�
hA,ÁuinÒˆ�pÁ · ◊ ds.
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Next, integrating I2
Á

yields:

I2
Á

=
⁄

ˆ�
Ÿ(hA,Á + hC,Á)uÁpÁ ◊ · nˆ� ds

≠

⁄

ˆ�
(hA,Á + hC,Á)pÁÒˆ�uÁ · ◊ ds ≠

⁄

ˆ�
(hA,Á + hC,Á)uÁÒˆ�pÁ · ◊ ds

≠

⁄

ˆ�
Òˆ�(hA,Á + hC,Á) · ◊ uÁpÁ ds.

Additionally, we can substitute the definitions of “ ˆuÁ
ˆnˆ�

and “ ˆpÁ

ˆnˆ�
into I3

Á
and decompose them tangen-

tially:

I3
Á

=
⁄

ˆ�
hA,Áuin

3
Òˆ�pÁ + ˆpÁ

ˆnˆ�
nˆ�

4
· ◊ ds

≠

⁄

ˆ�
(hA,Á + hC,Á)uÁ

3
Òˆ�pÁ + ˆpÁ

ˆnˆ�
nˆ�

4
· ◊ ds ≠

⁄

ˆ�
(hA,Á + hC,Á)pÁ

3
Òˆ�uÁ + ˆuÁ

ˆnˆ�
nˆ�

4
· ◊ ds

Computing now I1
Á

≠ I2
Á

+ I3
Á

yields:

I1
Á

≠ I2
Á

+ I3
Á

=
⁄

ˆ�
ŸhA,ÁuinpÁ ◊ · nˆ� ds ≠

⁄

ˆ�
Ÿ(hA,Á + hC,Á)uÁpÁ ◊ · nˆ� ds

+
⁄

ˆ�
hA,ÁpÁ

ˆuin
ˆnˆ�

◊ · nˆ� ds ≠

⁄

ˆ�
(hA,Á + hC,Á)pÁ

ˆuÁ

ˆnˆ�
◊ · nˆ� ds

+
⁄

ˆ�
hA,Áuin

ˆpÁ

ˆnˆ�
◊ · nˆ� ds ≠

⁄

ˆ�
(hA,Á + hC,Á)uÁ

ˆpÁ

ˆnˆ�
◊ · nˆ� ds

≠

⁄

ˆ�
uinpÁÒˆ�hA,Á · ◊ ds +

⁄

ˆ�
uÁpÁÒˆ�(hA,Á + hC,Á) · ◊ ds.

Recall that by (4.82) we have:

“
ˆuÁ

ˆnˆ�
= hA,Áuin ≠ (hC,Á + hA,Á)uÁ on ˆ�,

hence we can identify “ ˆuÁ
ˆnˆ�

in the sum to see:

I1
Á

≠ I2
Á

+ I3
Á

=
⁄

ˆ�
Ÿ“

ˆuÁ

ˆnˆ�
hA,ÁpÁ ◊ · nˆ� ds

+
⁄

ˆ�
hA,ÁpÁ

ˆuin
ˆnˆ�

◊ · nˆ� ds ≠

⁄

ˆ�
(hA,Á + hC,Á)pÁ

ˆuÁ

ˆnˆ�
◊ · nˆ� ds

+
⁄

ˆ�
“

ˆuÁ

ˆnˆ�

ˆpÁ

ˆnˆ�
◊ · nˆ� ds

≠

⁄

ˆ�
uinpÁÒˆ�hA,Á · ◊ ds +

⁄

ˆ�
uÁpÁ Òˆ�(hA,Á + hC,Á) · ◊ ds.

Substituting back in results in the expression taking the form:

J Õ(�)(◊) =
⁄

ˆ�
(j(ÒuÁ) ≠ “ÒuÁ · ÒpÁ) ◊ · nˆ� ds ≠

⁄

ˆ�
Ÿ“

ˆuÁ

ˆnˆ�
hA,ÁpÁ ◊ · nˆ� ds

≠

⁄

ˆ�
hA,ÁpÁ

ˆuin
ˆnˆ�

◊ · nˆ� ds +
⁄

ˆ�
(hA,Á + hC,Á)pÁ

ˆuÁ

ˆnˆ�
◊ · nˆ� ds ≠

⁄

ˆ�
“

ˆuÁ

ˆnˆ�

ˆpÁ

ˆnˆ�
◊ · nˆ� ds

+
⁄

ˆ�
uinpÁÒˆ�hA,Á · ◊ ds ≠

⁄

ˆ�
uÁpÁ Òˆ�(hA,Á + hC,Á) · ◊ ds

+ 1
Á2

⁄

ˆ�

A
hÕ

A
dˆ�

�C

Á

B
DÕ

C
(0)(◊) + hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊)

B
uÁpÁ ds

≠
1
Á2

⁄

ˆ�
hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊) uinpÁ ds.
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We can further simplify the last three lines of this new expression. Via uses of Lemma 2.5 and Lemma 2.3
for the region �A (and, respectively, for the region �C) we can see that:

Òˆ�hA,Á · ◊ ≠
1
Á2 hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊)

= ≠
1
Á2 hÕ

A
dˆ�

�A

Á

B
log

x
(p�A(x))

dˆ�
�A

(x)
· ◊ ≠

1
Á2 hÕ

A
dˆ�

�A

Á

B
DÕ

A
(0)(◊)

= 1
Á2 hÕ

A
dˆ�

�A

Á

B A
◊(p�A) · n�A(p�A) ≠

⁄
d

S
G(p)

0
◊(‡(t)) · II(‡Õ(t), ‡Õ(t)) dt

B
,

which, upon substitution, and after imposing ◊ ·nˆ� = 0 leads to the desired expression in Proposition 4.4.
⌅

A.2.2 Proof of Proposition 4.6
Sketch of proof. We give the main outline of the proof since it’s very similar to the proof of Proposition 4.4.
We assume that ◊ = 0 outside of the box delimited by � and denote j(u) = |u|

2 = uu.
Step 1. We compute the Lagrangian derivative. For ◊ œ � with norm ||◊||W 1,Œ(Rd,Rd) < 1, the

function u�◊ œ H1(�◊) is the unique solution to the variational problem:

’v œ H
1(D \ �◊; C),

⁄

D\�◊

“Òu�◊ · Òv dx ≠ Ê
2

⁄

D\�◊

u�◊ v dx ≠
1

iÊ ≠ 1
R

2 ⁄

�E ◊

u�◊ v ds ≠ iÊ

z

⁄

(�R)◊

u�◊ v ds =
⁄

ˆ�◊

“
ˆf

ˆnˆ�◊

v ds + iÊ

z

⁄

(�R)◊

fv ds,

where v is the conjugate of v, and Òv is the conjugate of its gradient. After a few calculations we arrive
at the following characterization for the Lagrangian derivative.

’v œ H
1(D \ �◊; C),

⁄

D\�
“Òů�(◊) · Òv dx ≠ Ê

2
⁄

D\�
ů�(◊)v dx +

1
iÊ ≠ 1

R

2 ⁄

�E

ů�(◊)v ds ≠ iÊ

z

⁄

�R

ů�(◊)v ds =

≠
⁄

�
(Ò“ · ◊)(Òu� · Òv) dx ≠

⁄

�
(Ò · ◊I ≠ Ò◊ ≠ Ò◊

T )“Òu� · Òv dx

+ Ê
2

⁄

D\�
(Ò · ◊)u�v dx + iÊ

z

⁄

�R

(Òˆ� · ◊)u�v ds + iÊ

z

⁄

�R

Òˆ� · (f◊)v ds

+ d
d◊

---
◊=0

5⁄

ˆ�
(“ ¶ (Id + ◊))

1
ˆf

ˆnˆ�
¶ (Id + ◊)

2
|com(I + Ò◊)nˆ�|v ds

6
,

(A.4)

Step 2. Shape derivative of J(�). We now calculate the derivative of the objective function J(�); for
su�ciently small ◊ œ W 1,Œ(Rd, Rd), it holds:

J Õ(�)(◊) =
⁄

�
(Ò · ◊)j(u�) dx + Re

3⁄

�
jÕ(u�)̊u�(◊) dx

4

Step 3. We reformulate this derivative by using the adjoint state. The weak formulation for
p œ H1(�; C) is:

’v œ H
1(D \ �; C),

⁄

D\�
“Òp · Òv dx ≠ Ê

2
⁄

D\�
pv dx ≠

1
≠iÊ ≠ 1

R

2 ⁄

�E

pv ds + iÊ

z

⁄

�R

pv ds = ≠
⁄

�
j

Õ(u�)v dx,

Taking the complex conjugate on both sides and choosing v = ů�(◊), results in
⁄

D\�
“Òů�(◊)·Òpdx≠Ê

2
⁄

D\�
ů�(◊)pdx≠

1
iÊ ≠ 1

R

2 ⁄

�
ů�(◊)pds≠ iÊ

z

⁄

�R

“ů�(◊)pds = ≠
⁄

�
ů�(◊)jÕ(u�)dx.
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Now we can recognize the left hand side of the equation above, by choosing v = p in (A.4), so that,

≠

⁄

�
ů�(◊)jÕ(u�) dx = ≠

⁄

�
(Ò“ · ◊)(Òu� · Òp) dx ≠

⁄

�
(Ò · ◊I ≠ Ò◊ ≠ Ò◊T )“Òu� · Òp dx

+ Ê2
⁄

D\�
(Ò · ◊)u�p dx + iÊ

z

⁄

�R

(Òˆ� · ◊)u�p ds + iÊ

z

⁄

�R

Òˆ� · (f◊)p ds

+ d
d◊

----
◊=0

5⁄

ˆ�
(“ ¶ (Id + ◊))

3
ˆf

ˆnˆ�
¶ (Id + ◊)

4
|com(I + Ò◊)nˆ�|p ds

6
.

Step 4. Derivation of the surfacic form. At this point one could integrate by parts towards an
expression of the form: ⁄

ˆ�
v� ◊ · nˆ� ds, for some v�,

but since we already know this to be the case for the integrals over � and ˆ�, which cancel when we set
◊ · nˆ� = 0, we look at the terms that depend on �R. From one side we have:

⁄

�R

(Òˆ� · ◊)u�p ds =
⁄

ˆ�R

u�p ◊ · nˆ�R d‡ +
⁄

�R

≠Òˆ�(up) + Ÿup ◊ · nˆ� ds.

For the second integral depending on �R, we find:
⁄

�R

Òˆ� · (f◊)p ds =
⁄

ˆ�R

fp ◊ · nˆ�R d‡ +
⁄

�R

(≠Òˆ�p · ◊ + Ÿp◊ · nˆ�) ds

In this manner, after setting ◊ · nˆ� = 0, we can eventually deduce:
⁄

�
jÕ(u�)̊u�(◊) dx = iÊ

z

⁄

ˆ�R

(u� + f)p ◊ · nˆ�R d‡.

As a consequence,

Re
3⁄

�
jÕ(u�)̊u�(◊) dx

4
= ≠

Ê

z
Im

3⁄

ˆ�R

(u� + f)p ◊ · nˆ�R d‡

4
,

whence the result.
⌅
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Appendix B

Di�erentiability

B.1 The Fréchet derivative
The Fréchet derivative is the generalization of the classical derivative to Banach spaces. For a function
f : V æ W , where V and W are Banach spaces, the Fréchet derivative at a point u œ V is a bounded
linear operator L : V æ W such that L provides the best linear approximation to f near x0.

Definition B.1 (Fréchet di�erentiability). Let V and W be two Banach spaces. Let f be defined
on a neighborhood of u œ V with values in W . We say f is Fréchet di�erentiable at u if there
exists a continuous linear mapping L : V æ W such that

f(u + w) = f(u) + L(w) + o(w), with lim
wæ0

||o(w)||W
||w||V

= 0 (B.1)

We call f Õ(u) := L, the Fréchet derivative of f at u.

The Fréchet derivative satisfies the usual rules of calculus, including:

1. Linearity: If f and g are Fréchet di�erentiable and – and — are scalars, then:

D(–f + —g)(x) = –Df(x) + —Dg(x).

2. Product rule: If f, g : X æ Y are Fréchet di�erentiable, then their product (in the case of Banach
algebras) satisfies:

D(fg)(x) = Df(x)g(x) + f(x)Dg(x).

3. Chain rule: If f : U æ V and g : V æ W are Fréchet di�erentiable, then the composition g ¶ f is
Fréchet di�erentiable, and:

D(g ¶ f)(x) = Dg(f(x)) ¶ Df(x).

For more information on Fréchet di�erentiability, we refer to the standard books [277, 244]

B.2 Di�erentials and gradients

Let H be a Hilbert space with inner product a(·, ·) and norm ÎuÎH := a(u, u)1/2. The Fréchet derivative
of a function F : H æ R at u œ H is the bounded linear map:

F Õ(u) œ Hú, v ‘æ F Õ(u)(v),
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APPENDIX B. DIFFERENTIABILITY

satisfying the first-order expansion:

F (u + v) = F (u) + F Õ(u)(v) + o(v), |o(v)|
ÎvÎH

æ 0 as v æ 0.

By the Riesz representation theorem, Hú is identified with H, allowing us to define the gradient g œ H
as the unique element such that:

’v œ H, a(g, v) = F Õ(u)(v).

If ã(·, ·) is another equivalent inner product on H, the corresponding gradient g̃ œ H satisfies:

’v œ H, ã(g̃, v) = F Õ(u)(v),

where g̃ generally di�ers from g, and gradients may be defined with respect to ã instead of a.
Now, let (V, Î ·ÎV ) be a Banach space, and F : V æ R a di�erentiable function. The Fréchet derivative

F Õ(u) at u œ V is still defined via the first-order expansion, but without a gradient, as Banach spaces
generally lack an inner product. However, if H µ V is a Hilbert space continuously embedded in V ,
meaning:

’v œ H, ÎvÎV Æ CÎvÎH ,

the derivative F Õ(u)(v) induces a bounded map on H, and by the Riesz theorem, there exists g œ H such
that:

’v œ H, a(g, v) = F Õ(u)(v).

Conversely, if F : V æ R is di�erentiable and V is embedded in a larger Hilbert space H, the derivative
F Õ(u) may extend to H, providing a broader regularity for F .

B.3 Jacobi’s formula
Jacobi’s formula is a mathematical result in matrix theory that provides the derivative of the determinant
of a matrix. Specifically, it expresses how the determinant of a matrix changes when the matrix itself
changes with respect to some parameter, usually time. The formula is useful in di�erential equations,
control theory, and other areas of applied mathematics.

Theorem B.1 (Jacobi’s formula). Let A be a di�erentiable map from the real numbers to Rn◊n,
then:

d

dt
det A(t) = tr

3
adj (A(t)) dA(t)

dt

4
= (det A(t)) tr

3
A(t)≠1 dA(t)

dt

4
(B.2)

B.4 Di�erentiation through a minimum
This section is excerpted from [116] and the reader is referred to it for further reference. Consider a
functional

G : [0, · ] ◊ X æ R

for some · > 0 and some set X. For each t in [0, · ], define

g(t) def= inf{G(t, x) : x œ X},

X(t) def= {x œ X : G(t, x) = g(t)}.

The objective is to characterize the limit

dg(0) def= lim
tæ0

g(t) ≠ g(0)
t

when X(t) is not empty for 0 Æ t Æ · . When X(t) = {xt
} is a singleton, 0 Æ t Æ · , and the derivative

ẋ = lim
tæ0

xt
≠ x0

t
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of x is known, then it is easy to obtain dg(0) under appropriate di�erentiability of the functional G with
respect to t and x. When ẋ is not readily available or when the sets X(t) are not singletons, this direct
approach fails or becomes very intricate.

We present a theorem that gives an explicit expression for dg(0), the derivative of the minimum of
the functional G with respect to t at t = 0. Its originality is that the di�erentiability of xt is replaced
by a continuity assumption on the set-valued function and the existence of the partial derivative of the
functional G with respect to the parameter t. In other words, this technique does not require a priori
knowledge of the derivative ẋ of the minimizing elements xt with respect to t.

Theorem B.2 (Di�erentiation through a minimum). Let X be an arbitrary set, · > 0 and
G : [0, · ] ◊ X æ R a functional. Denote, for every t œ [0, · ], g(t) := infX G(t, ·). Assume that the
four conditions below are fulfilled:

1. For every t œ [0, · ], the set X(t) := {x œ X | G(t, x) = infX G(t, ·)} is nonempty.

2. G is di�erentiable with respect to t at every (t, x) œ [0, · ] ◊ X.

3. For every x œ X(0), the map t ‘æ
ˆG

ˆt
(t, x) is upper semicontinuous at t = 0.

B.5 Implicit function theorem
The crucial element in proving the di�erentiability of a function over the domain is the implicit function
theorem.

Theorem B.3 (Implicit function theorem). Let �, E, F be Banach spaces, V µ �, U µ E be
open sets. Let p Ø 1, and F : V ◊U æ G be a function of class Cp. For a given point (◊0, u0) œ V ◊U
where F(◊0, u0) = 0, assume that the partial di�erential DuF(◊0, u0) : F æ G is a linear isomorphism.
Then there exists an open subset V0 µ V of ◊0 in �, and a mapping g : V0 æ U such that:

i) g(◊0) = u0,

ii) for ◊ œ V0, the equation F(◊, u) = 0 has u = g(◊) for unique solution in E,

iii) The mapping g is of class Cp.

B.6 The space W 1,Œ

Definition B.2 (Lipschitz di�eomorphism). The set L defined by

L :=
)

T : Rd
æ Rd

| (T ≠ Id) œ W 1,Œ(Rd; Rd) and (T ≠1
≠ Id) œ W 1,Œ(Rd; Rd)

*
(B.3)

is called the space of Lipschitz di�eomorphisms.
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Appendix C

Useful integration formulas

C.1 Green’s identities

The following are simple consequences of the usual Green’s identities.

Proposition C.1. Let � be a domain with smooth boundary. They are valid for deformations
◊ œ W 1,Œ(Rd, Rd), functions w œ H1(�), and vector fields a, b œ H1(�)d.

⁄

�
wÒ · ◊ dx =

⁄

ˆ�
w◊ · n ds ≠

⁄

�
◊ · Òw dx, (C.1)

and ⁄

�
Ò◊a · b dx =

⁄

ˆ�
(a · n)(◊ · b) ds ≠

⁄

�
(diva)(b · ◊) dx ≠

⁄

�
(Òb)a · ◊ dx. (C.2)

Corollary C.1. Let � µ Rd be a bounded, Lipschitz domain, and let „ be a di�eomorphism from
Rd onto itself. Then, a measurable function f : Rd

æ R, belongs to L1(„(ˆ�)) if and only if
f ¶ „ œ L1(ˆ�), and: ⁄

„(ˆ�)
f dx =

⁄

�
| det(Ò„)| f ¶ „ dx, (C.3)

where Ò„ is the Jacobian matrix of „.

Corollary C.2. Let � µ Rd be a bounded, Lipschitz domain, and let „ be a di�eomorphism from
Rd onto itself. Then, a measurable function f : Rd

æ R, belongs to L1(„(ˆ�)) if and only if
f ¶ „ œ L1(ˆ�), and:

⁄

„(ˆ�)
f dx =

⁄

ˆ�
det(Ò„)|(Ò„)≠T n| f ¶ „ dx, (C.4)

where Ò„ is the Jacobian matrix of „.

C.2 Tangential calculus
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Proposition C.2. Let � µ Rd be a smooth bounded domain with boundary ˆ�. Let u œ H1(ˆ�)d

and ◊ œ H1(ˆ�)d. Then:
⁄

ˆ�
uÒˆ� · ◊ ds =

⁄

ˆ�
(≠◊ · Òˆ�u + Ÿu◊ · n) ds (C.5)
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Appendix D

Riemannian geometry

In this section, we provide the necessary geometric preliminaries for understanding the contents of
Chapter 2. For a comprehensive understanding of di�erential geometry, we recommend referring primarily
to the manuscripts [219, 220]. Additionally, we suggest the following references specifically focused on
Riemannian geometry [122, 80] and di�erential geometry in general [121, 303].

D.0.1 Riemannian manifolds
We begin our review with the definition of a tangent space.

Definition D.1 (Tangent space). For every point p œ M , a tangent vector at p is a linear
map v : CŒ(M) æ R that is a derivation at p, meaning that for all f, g œ CŒ(M) it satisfies the
product rule:

v(fg) = f(p)vg + g(p)vf . (D.1)

The set of all tangent vectors at p is denoted by TpM and called the tangent space at p.

We shall not explain how or why it makes sense to utilize this notion of tangent vectors as derivations,
since [220] already provides an excellent introduction and discussion on this topic. However, it proves
useful to mention that any member of TpM can be regarded as a pair (p, v) where p represents a point on
the manifold and v a vecto direction.

Definition D.2 (Riemannian manifold). A Riemannian manifold is a pair (M, g) where M
is a smooth manifold and g is a 2-tensor field whose value gp at each point p œ M is an inner product
on the tangent space TpM .

We will consistently assume that all manifolds under consideration are Riemannian, and any submani-
fold will be equipped with its induced metric. At each point p œ M , the inner product gp on the tangent
space TpM will be denoted as u · v := gp(u, v) for any u, v œ TpM , assuming the choice of metric is clear.
We define the length or norm of a vector v œ TpM as |v| :=

Ô
v · v.

Regarding notation, the symbol M typically represents the ambient manifold (without boundary) in
which all embedded submanifolds reside. A smooth coordinate chart on an open subset U µ M will be
denoted by (U, „), where „ : U æ V µ Rn is a smooth map. We use upper indices for coordinates, so if
p œ M , its coordinates are written as „(p) = (x1, . . . , xn). Curves will typically be denoted as “ : I æ M
or ‡ : I æ M , where I is a subset of R.

Furthermore, we use CŒ(M) to denote the vector space of all smooth functions from M to R, and
CŒ(M, N) to denote the set of all smooth maps from a smooth manifold M to another smooth manifold
N . Additionally, it is important to note that if M is an n-dimensional smooth manifold, we have a natural
way to represent any tangent vector v œ TpM using the so-called coordinate vectors.
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Figure D.1: Example of a vector field ◊ on M . The value of a vector field ◊(p) can be regarded as a pair
(p, v), which satisfies the relation fi(◊(p)) = p.

Definition D.3. Let M be an n-dimensional smooth manifold, and let (U, „) be coordinate chart,
whose coordinate functions are given by (x1, . . . , xn). We define the coordinate vectors ˆ/ˆxi

--
p

by:
ˆ

ˆxi

----
p

f = ˆ

ˆxi

----
„(p)

!
f ¶ „≠1"

. (D.2)

In particular, these vectors form a basis of TpM .

Now we move on to the tangent bundle. The tangent bundle is the disjoint union of the tangent
spaces of the n dimensional manifold M . In general, the tangent bundle TM is a particular example of
a vector bundle and can be made into a 2n dimensional manifold via the natural topology and smooth
structure (see for instance Proposition 3.18 in [220]). Furthermore, the notion of tangent bundle, allows
us to define the concept of a vector field as a section of the former.

Definition D.4 (Tangent bundle). The tangent bundle T M of M , denoted TM , is the dis-
joint union of the tangent spaces at all points of M :

TM :=
·

pœM

TpM . (D.3)

Definition D.5 (Vector field). A smooth section ◊ of T M is called a smooth vector field.
That is, a smooth map ◊ : M æ TM such that fi ¶ ◊ = IdM , where fi : TM æ M is the projection
mapping of TM , i.e. ’p œ M, ◊(p) œ TpM . The set of all smooth vector fields on M is denoted
by X(M). In addition, the zero section 0M is defined as the smooth vector field such that
0M (p) = 0 œ TpM for all p œ M .

Definition D.6. Given a smooth curve “ : I æ M , we define a smooth vector field along “ as
a smooth map ◊ : I æ TM such that ◊(t) œ T“(t)M . We denote the set of all smooth vector fields
along “ by X(“).

In general, one can think of sections as “graphs” of vectors on a manifold. In other words, the relation
fi ¶ ◊ = IdM expresses that the arrow ◊(p) shall have p as its base point.

Definition D.7 (Local frame). A local frame for TM is an ordered n-tuple (E1, . . . , En) of local
sections over an open set U such that (E1(p), . . . , En(p)) forms a basis of TpM for every p œ M .

Among local frames, we have in particular the notion of adapted orthonormal frame, which is
particularly useful in practice.
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(a) Example of hypersurface S embedded in
the ambient manifold M .

(b) Example of a regular domain G, with boundary ˆG,
embedded in the ambient manifold M .

Definition D.8 (Adapted orthonormal frame). If (M, g) is an n-dimensional Riemannian man-
ifold and S is an m-dimensional submanifold with its induced metric, an orthonormal local frame
(E1, . . . , En) for M on an open subset U µ M is said to be adapted to S if the first m vector fields
E1, . . . , Em are tangent to S.

Lemma D.1. Let (M, g) be an n-dimensional Riemannian manifold, and let S be a smooth embedded
submanifold with induced metric. For any p œ S, there exists a neighborhood U of p in M and a
smooth orthonormal frame for M on U that is adapted to S.

We will be often dealing with hypersurfaces and regular domains embedded in an ambient space.

Definition D.9 (Hypersurface). Let (M, g) be a smooth manifold with metric g. A hypersurface
S in M is a submanifold of codimension 1 and we refer to M as the ambient manifold.

Definition D.10 (Regular domain). A regular domain G of M is a subset of M which is also
a closed embedded codimension 0 submanifold with boundary.

Given a regular domain G embedded in the ambient manifold M , we will often need to talk about
the concept of an outward-pointing unit normal vector field nˆG. Let us first define the space which will
correspond to the codomain of the normal vector field.

Definition D.11 (Normal Bundle). Let (M, g) be a smooth Riemannian manifold and S µ M a
smooth submanifold with or without boundary in M . A vector n œ TpM is normal to S if w · n = 0
for every w œ TpM . The space of all vectors normal to M at p, called the normal space at p, is a
subspace of TpM and is denoted NpM = (TpM)‹. The set

NS =
·

pœM

NpM (D.4)

is called the normal bundle of S.

With this definition in place, we can define the unit normal vector field.

Theorem D.1 (Outward-pointing unit normal). If (M, g) is a smooth Riemannian manifold
with boundary, the normal bundle to ˆM is a smooth rank-1 vector bundle over ˆM , and there is a
unique smooth outward-pointing unit normal vector field NˆM along all of ˆM .
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Remark D.1. In general, it is possible to extend the previous result to the case of a hypersurface
S. Indeed, at every p œ M we can consider any adapted orthonormal frame (E1, . . . , En+1) on a
neighborhood U of p in M , which furnishes us with two choices of unit normal vectors; ±En+1.
Utilizing this fact we can deduce that for a su�ciently small neighborhood of p, we can always choose
some smooth unit normal vector field along S. If both M and S are orientable we can use the
orientation to choose a smooth unit normal vector field along all of S, but in general this might or
might not be possible.

D.0.2 Connections and covariant derivatives

A connection in di�erential geometry is a tool used to compare and relate vectors in the tangent spaces
of a manifold at di�erent points. It allows for the definition of how vectors change as they move along a
curve on the manifold. Connections are essential for defining concepts like parallel transport, covariant
derivatives, and curvature. Essentially, a connection provides a set of formal rules for di�erentiating
vector fields on manifolds.

Definition D.12 (Connection). Let TM be the tangent vector bundle of M . A connection on
M is a map:

Ò : X(M) ◊ X(M) æ X(M) (D.5)
(◊, ÷) ‘æ Ò◊÷ , (D.6)

which satisfies:

1. Ò◊÷ is linear over CŒ(M) in ◊, i.e.

Òf1◊1+f2÷2÷ = f1Ò◊1÷ + f2Ò◊2÷ , (D.7)

for any f1, f2 œ CŒ(M) and ◊, ÷ œ X(M).

2. Ò◊÷ is linear over R in ÷, i.e.

Ò◊(a1÷1 + a2÷2) = a1Ò◊÷1 + a2Ò◊÷2 , (D.8)

for a1, a2 œ R and ÷1, ÷2 œ X(M).

3. Ò satisfies the product rule, i.e.

Ò◊(f÷) = fÒ◊÷ + (◊f)÷ . (D.9)

Furthermore, we call Ò◊÷ the covariant derivative of ÷ in the direction ◊.

In flat, Euclidean space, the derivative of a vector field is straightforward, as we can simply subtract
vectors at di�erent points. However, in curved spaces or manifolds, vectors at di�erent points lie in
di�erent tangent spaces, so we need a way to compare them that considers the manifold’s curvature. This
is where the covariant derivative comes in.
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Theorem D.2 (Covariant derivatives along curves). Let M be a smooth manifold and let Ò

be a connection on M . For each smooth curve, “ : I æ M , the connection determines a unique
operator:

Dt : X(“) æ X(“) , (D.10)

called the covariant derivative along “(t), satisfying the following properties:

1. Linearity over R; if ◊, ÷ œ X(“) and a, b œ R, then:

Dt(a◊ + b÷) = aDt◊ + bDt÷ . (D.11)

2. The product rule; if ◊ œ X(◊), then:

Dt(f◊) = f Õ◊ + fDt◊ , (D.12)

for f œ CŒ(I).

3. If ◊ œ X(“) can be extended to an open neighborhood U µ M , then for every extension ◊̃ of ◊:

Dt◊(t) = Ò“Õ(t)◊̃ . (D.13)

Definition D.13 (Lie bracket). Let ◊, ÷ œ X(M). The map [◊, ÷] : CŒ(M) æ CŒ(M) defined
by:

[◊, ÷]f := ◊(÷f) ≠ ÷(◊f) (D.14)

is called the Lie bracket of ◊ and ÷.

Theorem D.3 (Fundamental theorem of Riemannian geometry). Let (M, g) be a Rieman-
nian manifold. There eixsts a unique connection Ò on M such that:

1. It is compatible with g. That is, for all ◊, ÷, ’ œ X(M):

Ò◊(÷ · ’) = (Ò◊÷) · ’ + ÷ · (Ò◊’) (D.15)

2. It is symmetric. That is, for all ◊, ÷ œ X(M):

’f œ CŒ(M), (Ò◊÷ ≠ Ò÷◊) f = [◊, ÷]f (D.16)

Such a connection is called the Levi-Civita connection of g.

Let us mention that the previous theorem guarantees that we can always work with the Levi-Civita
connection, as long as we have a metric g on M . From now on, we shall always make the assumption
that we utilize the Levi-Civita connection without risk of confusion. Let us end this section with the
definition of the so called Christo�el symbols.

Proposition D.1 (Christo�el symbols). Let E = (E1, . . . , En) be a smooth local frame for TM
on an open subset U µ M . Then there exist n3 smooth function �k

i,j
: U æ R called the Christo�el

symbols with respect to E, such that:

ÒEiEj =
nÿ

k=0
�k

i,j
Ek . (D.17)

The Christo�el symbols describe how a vector field changes due to the curvature. In simpler terms,
they correct the naive derivative to account for the curvature, ensuring that the derivative is intrinsic to
the manifold.

D.0.3 Geodesics, the exponential map, and tubular neighborhoods
Geodesics are the generalization of the concept of a “straight line” to curved spaces. In a mathematical
context, particularly in di�erential geometry, a geodesic is defined as a curve that represents the shortest
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distance between two points on a surface. Formally, it is a curve “(t) in a Riemannian manifold such that
the tangent vector to the curve remains parallel to itself when transported along the curve.

Definition D.14 (Geodesic). A smooth curve “ : I æ M is called a geodesic if for every t œ I,
Dt“Õ(t) = 0, where Dt denotes the covariant derivative along the curve.

The next theorem establishes the existence and uniqueness of geodesics in a manifold.

Theorem D.4 (Existence and uniqueness of geodesics). For every p œ M , v œ TpM , and
a œ R, there exists an open interval I µ R containing t and a geodesic “ : I æ M satisfying “(a) = p
and “Õ(a) = v.

Whenever we talk about a geodesic, we can utilize the fact that at each p, the vector v œ TpM can be
regarded as a pair v = (p, vp), which encodes the base point information and the direction in space, in
order to simply denote “v for a geodesic which satisfies “(a) = p, “Õ(a) = v. This notation is useful in the
definition of the exponential map.

Definition D.15. Let (M, g) a Riemannian manifold. Define the subset D µ TM by

D := {v œ TM : “v is defined on I}, (D.18)

where [0, 1] µ I. The exponential map is defined by:

exp : D æ M (D.19)
v ‘æ “v(1) . (D.20)

For each p œ M , the restriction of D to TpM is denoted exp
p

and called the exponential map at p.

The exponential map connects the tangent space at a point to the manifold itself. It provides a way
to translate a vector in the tangent space into a point on the manifold, following the direction and length
specified by the vector.

Remark D.2. Note that in general the geodesics on a submanifold (S, ĝ), with its induced metric,
of a Riemannian manifold (M, g) will not be equal in general. This is an important distinction to
make and henceforth we will denote the submanifold exponential map by ‰exp, whenever talking about
geodesics in S.

The exponential map enables the definition of a normal neighborhood and normal coordinates. In the
context of a Riemannian manifold, a normal neighborhood is a special type of region around a point with
certain advantageous properties. Specifically, it is an area where the exponential map is well-behaved,
ensuring a one-to-one correspondence between points in the tangent space and points on the manifold.

Definition D.16 (Star-shaped set). A subset U of a vector space V is said to be star-shaped
with respect to a point x œ V if for every y œ V , the line segment from x to y is contained in U .

Definition D.17 (Normal neighborhood). A neighborhood U of p œ M that is the di�eomorphic
image under exp

p
of a star-shaped neighborhood V of 0 œ TpM is called a normal neighborhood

of p.

Normal coordinates, also known as geodesic normal coordinates or Riemannian normal coordinates,
are a special type of coordinate system in the vicinity of a point on a Riemannian manifold. These
coordinates simplify many calculations and provide a locally ”flat” view of the manifold, making them
particularly useful for studying the local geometry around a point.

Definition D.18 (Normal coordinates). Let p œ M and let (b1, . . . , bn) be an orthonormal basis
for TpM . Let B : Rn

æ TpM be the basis isomorphism defined by B(x1, . . . , xn) =
q

n

i=1 xibi. If
U = exp

p
(V ) is a normal neighborhood of p, then the smooth coordinates „ : U æ Rn defined by:

„ = B≠1
¶ (exp

p

--
V

)≠1 , (D.21)

are called normal coordinates centered at p.
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Proposition D.2. Let p œ M and U a normal neighborhood of p. For every normal coordinate
chart on U centered at p, the coordinate basis is orthonormal at p; and for every orthonormal basis
(b1, . . . , bn) for TpM , there is a unique normal coordinate chart (U, x) on U such that ˆ

ˆxi

--
p

= bi for
i = 1, . . . , n.

Proposition D.3 (Properties of normal coordinates). Let (U, x) be any normal coordinate
chart centered at p œ M . Then:

1. x(p) = 0.

2. For every v =
q

n

i=1 vi ˆ

ˆxi

---
p

the geodesic “v : I æ M starting at p with intial velocity v is
represented in normal coordinates by the line:

“v(t) = (tv1, . . . , tvn) (D.22)

for t œ I and as long as 0 œ I.

3. The Christo�el symbols in these coordinates vanish at p.

Closely related and of great importance is the concept of a tubular neighborhood, which is heavily
utilized in Chapter 2. For a submanifold S, a tubular neighborhood provides a way to “thicken” S within
the ambient manifold while maintaining a structured relationship between the points in the neighborhood
and the submanifold. This concept is fundamental in di�erential geometry for studying the local geometry
around submanifolds and has various applications in mathematical analysis and theoretical physics.

Definition D.19 (Tubular neighborhood). Let S µ M be an embedded submanifold, fi : NS æ

S the normal bundle of S in M , and define DS := D fl NS. A tubular neighborhood of S in M is
an open subset U µ M which is the di�eomorphic image under exp|

DS
of a subset V µ DS of the

form:
V = {(x, v) œ NS : |v| < ”(x)} , (D.23)

for some positive continuous function ” : S æ (0, +Œ). If ”(x) = ‘ > 0 for all x œ M then it is
called an ‘-tubular neighborhood of S.

The following theorem asserts that any su�ciently small neighborhood of a submanifold can be
smoothly and uniquely mapped onto an open subset of its normal bundle. This theorem is particularly
useful for studying the geometry and topology of submanifolds within a larger manifold.

Theorem D.5 (Tubular neighborhood theorem). Let (M, g) be a Riemannian manifold. Ev-
ery embedded submanifold of M has a tubular neighborhood in M , and every compact submanifold
has an ‘-tubular neighborhood.

Normal neighborhoods and tubular neighborhoods are related concepts in di�erential geometry that
help in understanding the local structure of manifolds. Normal neighborhoods focus on the area around a
single point, using the exponential map to relate the tangent space to the manifold. Tubular neighborhoods
focus on the region around a submanifold, using the normal bundle to describe the neighborhood. Both
concepts simplify the analysis of manifolds by providing well-behaved local structures.

D.0.4 Curvature, families of curves, and Jacobi fields
Curvature is a concept in di�erential geometry that quantifies how a geometric object deviates from
being flat or straight. It measures the amount by which a curve, surface, or manifold bends. There are
several types of curvature, each applicable to di�erent geometric contexts, such as curves, surfaces, and
higher-dimensional spaces. The most general definition is the curvature endomorphism R. It measures
how much the metric tensor deviates from being locally isometric to Euclidean space.
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Definition D.20 (Curvature endomorphism). The map defined by:

R : X(M) ◊ X(M) ◊ X(M) æ X(M) (D.24)
(◊, ÷, ’) ‘æ Ò◊Ò÷’ ≠ Ò÷Ò◊’ ≠ Ò[◊,÷]’ , (D.25)

is called the Riemann curvature endomorphism.

The previous definition is quite general, and the information which it contains is much more conveniently
encoded into the following definition.

Definition D.21 (Curvature tensor). The map defined by:

Riem : X(M) ◊ X(M) ◊ X(M) ◊ X(M) æ R (D.26)
(◊, ÷, ’, —) ‘æ R(◊, ÷)’ · — , (D.27)

is called the Riemann curvature tensor.

The link between the curvature and geodesics can be established via the concept of variation through
geodesics, which captures how geodesics in a Riemannian manifold change as some parameters defining
them are varied. This concept introduces the variation vector field and Jacobi fields, providing insights
into the curvature and geometric properties of the manifold. It is fundamental in the calculus of variations,
understanding geodesic flows, and has important applications in fields like general relativity, where it
helps describe geodesic deviation and tidal forces.

Definition D.22. Given intervals I, J µ R, a smooth map � : J ◊ I æ M is called a one-
parameter family of curves. If “ : [a, b] æ M is a smooth curve then a variation of “ is a
family curves such that �(0, t) = “(t) for every t œ I. If � is a variation “, the variation field of �
is the smooth vector field t ‘æ

ˆ

ˆs
�(0, t) along “. Additionally, if “ is a geodesic and for every s œ J

the curve t ‘æ �(s, t) is a geodesic, then we say � is a variation through geodesics.

In particular, smooth families of curves satisfy the following relation.

Lemma D.2 (Symmetry lemma). Let � : J ◊ I æ M be a smooth family of curves in a Rieman-
nian manifold. On every rectangle Ri := J ◊ [ai≠1, ai] µ I, we have:

’(s, t) œ Ri, Ds

ˆ

ˆt
�(s, t) = Dt

ˆ

ˆs
�(s, t). (D.28)

We now state the link between the curvature tensor and geodesics.

Theorem D.6 (Jacobi equation). Let (M, g) be a Riemannian manifold, let “ be a geodesic in
M , and let J be a vector field along “. If J is the variation field of a variation through geodesics,
then J satisfies the following equation called the Jacobi equation:

D2
t
J + R(J, “Õ)“Õ = 0 , (D.29)

where R is the Riemann curvature endomorphism. A smooth vector field along a geodesic that satisfies
the Jacobi equation is called a Jacobi field.

In a nutshell, the Jacobi field is a vector field along a geodesic that describes how nearby geodesics
deviate from one another, governed by the Jacobi equation involving the Riemann curvature tensor.
Jacobi fields are crucial for understanding geodesic stability, the e�ect of curvature, and the occurrence of
conjugate points, with significant applications in di�erential geometry and general relativity.

Remark D.3. Let us comment on the physical interpretation of the Jacobi equation. It characterizes
the precise behavior of how a rigid body is deformed while traveling along a geodesic path in the
manifold. In physical terms, we can think of the curvature tensor as representing tidal forces that
stretch or compress the rigid body in a gravitational field. We refer the reader to [76] for more
interpretations and general knowledge on the Jacobi equation.
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D.0.5 Distance functions
This section will briefly present some useful concepts and results of distance functions on a Riemannian
manifold (M, g). Furthermore, we will present some results concerning its di�erentiable properties. We
consider all of our curves “ : [a, b] æ M to be smooth and define the length of “ to be:

Lg(“) =
⁄

b

a

|“Õ(t)|g dt . (D.30)

This notion of length allows us to define the concept of Riemannian distance between two points, which
in turn will let us define the notion of a distance function on a manifold.

Definition D.23 (Riemannian distance). For each pair of points p, q œ M , we define the Rie-
mannian distance from p to q, denoted by dM (p, q) to be the infimum of the lengths of all
admissible curves from p to q. Mathematically, dM (p, q) : M ◊ M æ R is the function defined by:

dM (p, q) := inf
“:[a,b]æM,

“(a)=p, “(b)=q

Lg(“) . (D.31)

Definition D.24. Suppose S µ M is any subset. For each point x œ M , we define the distance
from x to S to be:

dM (x, S) = inf
pœS

d(x, p) . (D.32)
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Appendix E

Fréchet spaces, the Gateaux deriva-
tive, and continuous di�erentiability

This chapter clarifies the definition of Gateaux derivative and continuous di�erentiability when working
on Fréchet spaces. The clarification and presentation of these concepts is necessary since we will be
performing calculus on functions which belong to CŒ(M), which notably lack a norm and cannot be
made into Banach spaces. The main reference for this section is the landmark work [178] but we also
recommend any reference on topological vector spaces such as [212, 284]. We start with the definition of
a seminorm and define our objects in terms of this elementary definition.

Definition E.1 (Seminorm). A seminorm on a vector space X is a real valued function || · || :
X æ R such that:

1. ’x œ X, ||x|| Ø 0;

2. ’x, y œ X ||x + y|| Æ ||f || + ||g||;

3. ’c œ R, ’x œ X, ||cf || = |c| · ||x||

A collection of seminorms {|| · ||k}kœN defines a unique topology such that a sequence xi æ x if and
only if ||fi ≠ f ||k æ 0 for all k œ N.

A Fréchet space is a type of topological vector space that generalizes many of the properties of Banach
spaces but without requiring a norm. Instead, it is defined using a countable family of seminorms.

Definition E.2 (Fréchet space). A Fréchet space is a vector space X which is:

1. Metrizable. Its topology is defined from a family of countable collection of seminorms {||·||k}kœN.

2. Hausdor� space. For x œ X, x = 0 when ||x||k = 0 for all k œ N.

More succinctly, a Fréchet space is a Hausdor� metrizable locally convex topological vector space.

In contrast to Banach spaces, a Fréchet space is defined by a countable family of seminorms rather
than a single norm. This family of seminorms induces a topology that facilitates the convergence and
continuity needed for the space’s completeness. Unlike Banach spaces, Fréchet spaces do not necessarily
have a norm, o�ering greater flexibility to accommodate spaces like the space of smooth functions. The
locally convex and metrizable structure of Fréchet spaces makes them particularly well-suited for more
complex analytical tasks involving infinite-dimensional spaces. Examples of Fréchet spaces are:

• Banach spaces. Every Banach space is a Fréchet space since the collection of seminorms is a
singleton with its sole element the norm defined on the Banach space.
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• Countable product of Fréchet spaces. Let {Xi}iœN be a family of Fréchet spaces. The (countable)
product X :=

r
Œ

i=1 Xi is again a Fréchet space.

• C Œ(M , B). The set of smooth functions defined on a compact manifold M which have as co-domain
the Banach space B forms a vector space and can be made into a Fréchet space by definining the
collection of seminorms:

’f œ CŒ(M, B), ||f ||k :=
kÿ

i=0
sup
pœM

----
ˆf

ˆxi

(p)
---- , (E.1)

where ˆf

ˆxi
denotes the i-th partial derivative of f . In particular the space CŒ(M) forms a Fréchet

space.

• C Œ(M , TM ). More generally, if M denotes a compact Riemannian manifold equipped with some
Riemannian metric, and CŒ(M, TM) is the set of smooth maps from M to its tangent bundle
(taken as a manifold), we can define the following collection of seminorms:

’f œ CŒ(M, TM), ||f ||k :=
kÿ

i=0
sup
pœM

--Dif(p)
-- , (E.2)

where Dif denotes the i-th covariant derivative of f .

A key observation regarding Fréchet spaces is that they can be viewed as a generalization of Banach
spaces while still preserving enough structure for “typical operations” to remain meaningful under broad
definitions. For instance, the definition of a Fréchet space as a local convex topological vector space is
su�cient for the Hahn-Banach theorem to hold (see, for example, [62, 212, 284, 59, 276]). Moreover,
Fréchet spaces provide enough structure to support di�erential calculus through the concept of the
Gateaux derivative. This allows us to perform di�erential calculus on functions defined on Fréchet spaces.

Definition E.3 (Gateaux derivative). Let X and Y be Fréchet spaces, U µ X an open subset,
and F : U æ Y be a continuous (possibly non-linear) map. The Gateaux derivative of F at the
point x œ U in the direction h œ X is defined by:

J Õ(x)(h) := lim
tæ0

F (x + th) ≠ F (x)
t

. (E.3)

Furthermore, we say J is Gateaux di�erentiable at x in the direction h if the limit exists.

Additionally, the definition of the Gateaux derivative is well-matched with the following definition of a
partial derivative. This definition of the partial derivative encapsulates the notion of taking the derivative
with respect to a specific direction in one of the arguments.

Remark E.1 (Partial derivatives). Let Xi denote a Fréchet for i œ {1, . . . , n}, Xn := �n

i=1Xi,
and Y another Fréchet space. We denote the i-th partial derivative of F : Xn

æ Y at x =
(x1, . . . , xn) œ Xn in the direction h by ˆF

ˆxi
(x)(h) and define it by:

ˆF

ˆxi

(x)(h) := lim
tæ0

F (x1, . . . , xi + th, . . . , xn) ≠ F (x)
t

. (E.4)

Equivalently, it is the Gateaux derivative of the map:

y ‘æ F (x1, . . . , y, . . . , xn) , (E.5)

where the xi are fixed.

Next, we recall the notion of continuously di�erentiability.

Definition E.4 (Continuous di�erentiability). We say that a map F : X æ Y is continously
di�erentiable (or C1) on U if the limit exists for all x œ U , all h œ X and, if J Õ : U ◊ X æ Y is
continuous.

It is an important fact that by employing this definition, the Gateaux derivative of J Õ(x) at x œ X
automatically becomes linear and bounded. We state the most important theorems, following [178].
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Theorem E.1 (Fundamental theorem of calculus). If J : U µ X æ Y is a continously di�er-
entiable map and if the path to h lies in U , then:

J(x + h) ≠ J(x) =
⁄ 1

0
J Õ(x + th)(h) dt (E.6)

Remark E.2. It is well-known that Fréchet di�erentiability (cf. e.g., [77, 7]) implies Gateaux
di�erentiability in Banach spaces. Therefore, when considering a functional J : X æ Y between
Banach spaces, demonstrating continuous di�erentiability in the Fréchet sense is su�cient to establish
continuous di�erentiability in the Gateaux sense.

The second most important theorem which we will often employ in our calculations is the linearity of
the Gateaux derivative of a continously di�erentiable map.

Theorem E.2 (Linearity of Gateaux derivative). If J : U µ X æ Y is continously di�eren-
tiable, x œ U and h, k œ X, and –, — œ R denote two scalars. Then:

J Õ(x)(–h + —k) = –J Õ(x)(h) + —J Õ(x)(k) . (E.7)

This theorem, coupled together with the fundamental theorem of calculus, yields the chain rule for
Gateaux derivatives.

Theorem E.3 (Chain rule). If J : X æ Y and G : Z æ Y are continously di�erentiable so is
their composition J ¶ G and

(J ¶ G)Õ (x)(h) = J Õ(G(x))(GÕ(x)(h)) . (E.8)

Furthermore, if f : I æ X is a parametrized continously di�erentiable curve and J : X æ Y is a
continously di�erentiable map, then J(f(t)) is also a parametrized continously di�erentiable curve
such that:

J(f(t))Õ = J Õ(f(t))f Õ(t) . (E.9)

Next, since we will often be working with functions whose multiple arguments operate on Fréchet
spaces, it is important that we precise the decomposition of the total derivative into its partial derivatives.

Theorem E.4 (Total derivative). Let J : X ◊ Y æ Z be a functional between Fréchet spaces and
fix (x, y) œ X ◊ Y . The partial derivatives ˆJ

ˆx
(x, y) : X æ Z and ˆJ

ˆy
(x, y) : Y æ Z at (x, y) exist

and are continuous if and only if the total derivative J Õ(x, y) : X ◊ Y æ Z at (x, y) exists and is
continuous. In this case, we have:

’(h, k) œ U, J Õ(x, y)(h, k) = ˆJ

ˆx
(x, y)(h) + ˆJ

ˆy
(x, y)(k) , (E.10)

for a neighborhood U µ X ◊ Y .

253


	Acknowledgments
	Résumé de la thèse
	Introduction
	A review of shape and topology optimization
	Historical context
	Hadamard's boundary variation method
	Definitions and generalities
	Techniques and approaches to compute shape derivatives
	Shape derivatives of criterions depending on the solution to a boundary value problem

	The Hilbertian extension-regularization procedure
	Topological derivatives
	Body-fitted shape optimization
	Shape representation via triangulations
	The level set method for tracking the motion of a domain
	Numerical discretization of the advection equations
	The signed distance function
	Discretization of the negative sub-domain of the level-set function

	The classical cantilever example
	The optimization problem
	A numerical experiment

	Limitations, variants and the homogenization phenomenon
	State of the art for shape and topology optimization of surfaces
	Theoretical developments and generalizations to manifolds
	Numerical evolution of domains on hypersurfaces embedded in Rd
	Optimization of the regions supporting boundary conditions for different PDEs
	Open-source programming tools for developing shape and topology optimization algorithms


	Towards a framework for the optimization of domains on manifolds
	Shape differentiability on manifolds
	The deformation of space
	Relation to parallel transport

	Shape representation via the signed distance function
	Generalities of shape derivatives on manifolds
	Structure of shape derivatives for a regular domain in the ambient space
	Structure of shape derivatives for a regular domain in a hypersurface of the ambient manifold
	Computation of shape derivatives
	Shape functionals constrained by a partial differential equation

	Future work

	Body-fitted tracking within a surface via a level set based mesh evolution method
	Evolution of a region on a surface in the level set framework
	Presentation of the numerical strategy
	Outline of the numerical algorithm
	Computation of the signed distance function on a surface
	Resolution of the level set advection equation on the surface S
	Meshing of the negative subdomain of a level set function

	Numerical framework
	Motion in the direction of the conormal vector field
	Wildland fire propagation

	Shape and topology optimization of the regions supporting boundary conditions
	Mathematical framework
	Computation of shape derivatives with respect to variations in the support of boundary conditions
	Hadamard's boundary variation method on a domain contained within a surface
	Smoothed interfaces for weakly-singular problems
	Approximate formulas for the numerical implementation of the regularized shape derivative
	A model optimization problem of the regions supporting boundary conditions of a thermal mechanics problem

	Sensitivity with respect to topological variations in the support of boundary conditions
	The topological derivative of replacing small regions of a set with another set
	Topological derivative of a criterion under the constraint of a boundary value problem

	Sobolev spaces on the boundary of a domain
	The single layer potential operator
	The case of the conductivity equation
	Replacement of homogeneous Neumann boundary conditions by homogeneous Dirichlet conditions
	Replacement of homogeneous Neumann boundary conditions by inhomogeneous Neumann boundary conditions

	The case of the Helmholtz equation
	Presentation of the Helmholtz model
	Replacement of homogeneous Neumann boundary conditions by Robin boundary conditions

	The case of the linear elasticity system
	Presentation of the linear elasticity setting
	Replacement of homogeneous Neumann boundary conditions by homogeneous Dirichlet conditions

	Numerical resolution of singular boundary integral equations
	The Galerkin scheme
	Decomposition of singular integrals through relative coordinates
	Regularization of the variational problem
	Numerical validation
	Extension to the vector-valued case

	Numerical method
	Optimization of the repartition of cathode-anode regions for a direct current electroosmotic mixer
	The optimization problem
	The shape derivative
	The topological derivative
	Experiment setup
	Analysis of results

	Optimization of sound-soft regions on the surface of a sound-hard obstacle for acoustic cloaking
	The scattering problem
	The optimization problem
	The shape derivative
	The topological derivative
	Experiment setup
	Analysis of results

	Optimization of the repartition of structural supports for a water tank
	The optimization problem
	The shape derivative
	The topological derivative
	Experiment setup
	Analysis of results

	Optimization of a clamp-locator system
	The optimization problem
	The shape derivative
	The topological derivative
	Experiment setup
	Analysis of results


	Rodin: A numerical C++20 library for shape and topology optimization
	Introduction
	Philosophy
	Similar libraries to Rodin

	Modules
	Theoretical basis
	A primer on meshes
	A primer on finite elements
	From weak formulations to linear algebra

	DSL embedding via template metaprogramming
	Code examples and illustrations
	The Poisson equation
	The Helmholtz equation
	The linear elasticity equation
	The level-set cantilever optimization in 2D


	Conclusions and perspectives
	Supporting material
	Useful identities for the computation of shape derivatives
	Proofs
	Proof of theorem.BoundaryOptimization.CathodeAnode.ShapeDerivative
	Proof of prop.Acoustics.ShapeDerivative


	Differentiability
	The Fréchet derivative
	Differentials and gradients
	Jacobi's formula
	Differentiation through a minimum
	Implicit function theorem
	The space W1, 

	Useful integration formulas
	Green's identities
	Tangential calculus

	Riemannian geometry
	Riemannian manifolds
	Connections and covariant derivatives
	Geodesics, the exponential map, and tubular neighborhoods
	Curvature, families of curves, and Jacobi fields
	Distance functions


	Fréchet spaces, the Gateaux derivative, and continuous differentiability

